跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張義芳
研究生(外文):Yi-Fang Chang
論文名稱:HDAC抑制劑抑制腫瘤血管新生作用機轉之探討
論文名稱(外文):Inhibitory mechanisms of HDAC inhibitor in tumor angiogenesis
指導教授:許準榕
口試委員:顏茂雄黃德富蕭哲志
口試日期:2014-01-12
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:血管新生內皮細胞羥基醯胺蛋白p53血管內皮生長因子
外文關鍵詞:AngiogenesisEndothelial cellsHydroxamatep53VEGF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
血管新生是腫瘤侵襲和轉移的主要路徑,因此血管新生便成為一治療腫瘤轉移的重要標的。最近在藥物的發展上,烴基醯胺衍生物因其具有廣泛之生理和藥理活性而被科學家所重視。在本論文,我們合成並篩選了一長鏈烴基醯胺衍生物WMJ-S-001,同時進一步探討其抗血管新生活性和可能作用機轉。研究結果發現WMJ-S-001會抑制血管內皮細胞生長因子VEGF-A所誘導之血管內皮細胞HUVEC的增生、侵襲和微管柱形成現象。WMJ-S-001也會抑制大鼠主動脈環出芽現象,利用異種移殖動物模式,我們也發現WMJ-S-001會抑制腫瘤血管新生作用。另一方面,WMJ-S-001會抑制VEGF-A所誘導血管內皮細胞膜上受體VEGFR2及其下游訊息分子如Src、 FAK、Akt和ERK的磷酸化, WMJ-S-001也被證實可增加細胞內蛋白磷酸分解酶SHP-1的酵素活性,同時SHP-1抑制劑 NSC-87877則會回復WMJ-S-001所抑制VEGFR2的磷酸化和細胞增生之作用。我們也發現WMJ-S-001會抑制血管內皮細胞週期之進行和誘導細胞凋亡,這些作用伴隨著轉錄因子p53的磷酸化和乙醯化增加和細胞內p21和survivin蛋白濃度的改變。綜而言之,在本論文我們發現長鏈烴基醯胺衍生物WMJ-S-001可以經由抑制VEGFR2訊息路徑和誘導細胞凋亡而調控血管內皮細胞的再模型化。這些結果推測WMJ-S-001可能可以作為一發展治療癌症轉移的具潛力治療藥物。
Angiogenesis, one of the major routes for tumor invasion and metastasis represents a rational target for therapeutic intervention. Recent development in drug discovery has highlighted the diverse biological and pharmacological properties of hydroxamate derivatives. In this study, we characterized the anti-angiogenic activities of a novel aliphatic hydroxamate, WMJ-S-001, in an effort to develop novel angiogenesis inhibitors. WMJ-S-001 inhibited vascular endothelial growth factor (VEGF)-A-induced proliferation, invasion and endothelial tube formation of human umbilical endothelial cells (HUVECs). WMJ-S-001 suppressed VEGF-A-induced microvessel sprouting from aortic rings, and attenuated angiogenesis in in vivo mouse xenograft models. In addition, WMJ-S-001 inhibited the phosphorylations of VEGFR2, Src, FAK, Akt and ERK in VEGF-A-stimulated HUVECs. WMJ-S-001 caused an increase in SHP-1 phosphatase activity, whereas NSC-87877, a SHP-1 inhibitor, restored WMJ-S-001 suppression of VEGFR2 phosphorylation and cell proliferation. Furthermore, WMJ-S-001 inhibited cell cycle progression and induced cell apoptosis in HUVECs. These results are associated with p53 phosphorylation and acetylation and the modulation of p21 and survivin. Taken together, WMJ-S-001 was shown to modulate vascular endothelial cell remodeling through inhibiting VEGFR2 signaling and induction of apoptosis. These results also support the role of WMJ-S-001 as a potential drug candidate and warrant the clinical development in the treatment of cancer.
I. 中文摘要 4
II. 英文摘要 5
III. 緒論 6
IV. 實驗材料與方法 14
V. 結果 20
VI. 討論 25
VII. 圖和表 28
VIII. 參考文獻 41
1.Abaza, M., and Y.A. Luqmani. 2013. The influence of pH and hypoxia on tumor metastasis. Expert Rev Anticancer Ther
2.Abou-Alfa, G.K., L. Schwartz, S. Ricci, D. Amadori, A. Santoro, A. Figer, J. De Greve, J.Y. Douillard, C. Lathia, B. Schwartz, I. Taylor, M. Moscovici, and L.B. Saltz. 2006. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24:4293-4300.
3.Appella, E., and C.W. Anderson. 2000. Signaling to p53: breaking the posttranslational modification code. Pathologie-biologie 48:227-245.
4.Argyriou, A.A., E. Giannopoulou, and H.P. Kalofonos. 2009. Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas. Oncology 77:1-11.
5.Ashkenazi, A. 2008. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19:325-331.
6.Bertrand, S., J.J. Helesbeux, G. Larcher, and O. Duval. 2013. Hydroxamate, a key pharmacophore exhibiting a wide range of biological activities. Mini Rev Med Chem 13:1311-1326.
7.Bhattacharya, R., J. Kwon, E. Wang, P. Mukherjee, and D. Mukhopadhyay. 2008a. Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*. J Mol Signal 3:8.
8.Bhattacharya, R., J. Kwon, E. Wang, P. Mukherjee, and D. Mukhopadhyay. 2008b. Src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*. Journal of molecular signaling 3:8.
9.Brooks, C.L., and W. Gu. 2003. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164-171.
10.Brugarolas, J., C. Chandrasekaran, J.I. Gordon, D. Beach, T. Jacks, and G.J. Hannon. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552-557.
11.Brunton, V.G., and M.C. Frame. 2008. Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol 8:427-432.
12.Carmeliet, P. 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology 69 Suppl 3:4-10.
13.Carmeliet, P., and R.K. Jain. 2000. Angiogenesis in cancer and other diseases. Nature 407:249-257.
14.Carmeliet, P., and R.K. Jain. 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298-307.
15.Chabot, C., K. Spring, J.P. Gratton, M. Elchebly, and I. Royal. 2009. New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29:241-253.
16.Chang, H.L., C.Y. Chen, Y.F. Hsu, W.S. Kuo, G. Ou, P.T. Chiu, Y.H. Huang, and M.J. Hsu. 2013. Simvastatin induced HCT116 colorectal cancer cell apoptosis through p38MAPK-p53-survivin signaling cascade. Biochimica et biophysica acta 1830:4053-4064.
17.Chen, C.T., and M.C. Hung. 2013. Beyond anti-VEGF: dual-targeting antiangiogenic and antiproliferative therapy. American journal of translational research 5:393-403.
18.Chen, J.S., and D.V. Faller. 2005. Histone deacetylase inhibition-mediated post-translational elevation of p27KIP1 protein levels is required for G1 arrest in fibroblasts. Journal of cellular physiology 202:87-99.
19.Chu, L.Y., D.P. Ramakrishnan, and R.L. Silverstein. 2013. Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood 122:1822-1832.
20.Chung, A.S., J. Lee, and N. Ferrara. 2010. Targeting the tumour vasculature: insights from physiological angiogenesis. Nature reviews. Cancer 10:505-514.
21.Conway, E.M., F. Zwerts, V. Van Eygen, A. DeVriese, N. Nagai, W. Luo, and D. Collen. 2003a. Survivin-dependent angiogenesis in ischemic brain: molecular mechanisms of hypoxia-induced up-regulation. Am J Pathol 163:935-946.
22.Conway, E.M., F. Zwerts, V. Van Eygen, A. DeVriese, N. Nagai, W. Luo, and D. Collen. 2003b. Survivin-dependent angiogenesis in ischemic brain: molecular mechanisms of hypoxia-induced up-regulation. The American journal of pathology 163:935-946.
23.DeHart, C.J., J.S. Chahal, S.J. Flint, and D.H. Perlman. 2014. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol Cell Proteomics 13:1-17.
24.Demetri, G.D., A.T. van Oosterom, C.R. Garrett, M.E. Blackstein, M.H. Shah, J. Verweij, G. McArthur, I.R. Judson, M.C. Heinrich, J.A. Morgan, J. Desai, C.D. Fletcher, S. George, C.L. Bello, X. Huang, C.M. Baum, and P.G. Casali. 2006. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329-1338.
25.Deng, C., P. Zhang, J.W. Harper, S.J. Elledge, and P. Leder. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675-684.
26.Deroanne, C.F., K. Bonjean, S. Servotte, L. Devy, A. Colige, N. Clausse, S. Blacher, E. Verdin, J.M. Foidart, B.V. Nusgens, and V. Castronovo. 2002. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21:427-436.
27.Dougher-Vermazen, M., J.D. Hulmes, P. Bohlen, and B.I. Terman. 1994. Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem Biophys Res Commun 205:728-738.
28.Dvorak, H.F. 2002. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 20:4368-4380.
29.Dvorak, H.F. 2005. Angiogenesis: update 2005. J Thromb Haemost 3:1835-1842.
30.Ellis, L., H. Hammers, and R. Pili. 2009. Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer letters 280:145-153.
31.Ellis, L.M., and D.J. Hicklin. 2008. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature reviews. Cancer 8:579-591.
32.Escudier, B., T. Eisen, W.M. Stadler, C. Szczylik, S. Oudard, M. Siebels, S. Negrier, C. Chevreau, E. Solska, A.A. Desai, F. Rolland, T. Demkow, T.E. Hutson, M. Gore, S. Freeman, B. Schwartz, M. Shan, R. Simantov, R.M. Bukowski, and T.S. Group. 2007. Sorafenib in advanced clear-cell renal-cell carcinoma. The New England journal of medicine 356:125-134.
33.Eto, M., and S. Naito. 2006. Molecular targeting therapy for renal cell carcinoma. International journal of clinical oncology 11:209-213.
34.Ferrara, N. 2000. VEGF: an update on biological and therapeutic aspects. Curr Opin Biotechnol 11:617-624.
35.Ferrara, N. 2002. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795-803.
36.Ferrara, N. 2004. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9 Suppl 1:2-10.
37.Ferrara, N., H.P. Gerber, and J. LeCouter. 2003. The biology of VEGF and its receptors. Nat Med 9:669-676.
38.Ferrara, N., and R.S. Kerbel. 2005. Angiogenesis as a therapeutic target. Nature 438:967-974.
39.Fidler, I.J. 2003. The pathogenesis of cancer metastasis: the ''seed and soil'' hypothesis revisited. Nat Rev Cancer 3:453-458.
40.Fischer, C., M. Mazzone, B. Jonckx, and P. Carmeliet. 2008. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature reviews. Cancer 8:942-956.
41.Flaherty, K.T. 2007. Sorafenib: delivering a targeted drug to the right targets. Expert review of anticancer therapy 7:617-626.
42.Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27-31.
43.Folkman, J. 2007. Angiogenesis: an organizing principle for drug discovery? Nature reviews. Drug discovery 6:273-286.
44.Fukuda, S., C.R. Mantel, and L.M. Pelus. 2004. Survivin regulates hematopoietic progenitor cell proliferation through p21WAF1/Cip1-dependent and -independent pathways. Blood 103:120-127.
45.Fukuda, S., and L.M. Pelus. 2006. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5:1087-1098.
46.Fulda, S. 2014. Regulation of cell migration, invasion and metastasis by IAP proteins and their antagonists. Oncogene 33:671-676.
47.Fulda, S., and D. Vucic. 2012. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11:109-124.
48.Gianani, R., E. Jarboe, D. Orlicky, M. Frost, J. Bobak, R. Lehner, and K.R. Shroyer. 2001. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum Pathol 32:119-125.
49.Gu, B., and W.G. Zhu. 2012. Surf the post-translational modification network of p53 regulation. Int J Biol Sci 8:672-684.
50.Guo, D.Q., L.W. Wu, J.D. Dunbar, O.N. Ozes, L.D. Mayo, K.M. Kessler, J.A. Gustin, M.R. Baerwald, E.A. Jaffe, R.S. Warren, and D.B. Donner. 2000. Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 275:11216-11221.
51.Harashima, H., N. Dissmeyer, and A. Schnittger. 2013. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345-356.
52.Harris, S.L., and A.J. Levine. 2005. The p53 pathway: positive and negative feedback loops. Oncogene 24:2899-2908.
53.Holash, J., S. Davis, N. Papadopoulos, S.D. Croll, L. Ho, M. Russell, P. Boland, R. Leidich, D. Hylton, E. Burova, E. Ioffe, T. Huang, C. Radziejewski, K. Bailey, J.P. Fandl, T. Daly, S.J. Wiegand, G.D. Yancopoulos, and J.S. Rudge. 2002. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99:11393-11398.
54.Hsu, Y.F., J.R. Sheu, G. Hsiao, C.H. Lin, T.H. Chang, P.T. Chiu, C.Y. Wang, and M.J. Hsu. 2011a. p53 in trichostatin A induced C6 glioma cell death. Biochimica et biophysica acta 1810:504-513.
55.Hsu, Y.F., J.R. Sheu, G. Hsiao, C.H. Lin, T.H. Chang, P.T. Chiu, C.Y. Wang, and M.J. Hsu. 2011b. p53 in trichostatin A induced C6 glioma cell death. Biochimica et biophysica acta 1810:504-513.
56.Hsu, Y.F., J.R. Sheu, C.H. Lin, W.C. Chen, G. Hsiao, G. Ou, P.T. Chiu, and M.J. Hsu. 2011c. MAPK phosphatase-1 contributes to trichostatin A inhibition of cyclooxygenase-2 expression in human umbilical vascular endothelial cells exposed to lipopolysaccharide. Biochimica et biophysica acta 1810:1160-1169.
57.Hsu, Y.F., J.R. Sheu, C.H. Lin, D.S. Yang, G. Hsiao, G. Ou, P.T. Chiu, Y.H. Huang, W.H. Kuo, and M.J. Hsu. 2012. Trichostatin A and sirtinol suppressed survivin expression through AMPK and p38MAPK in HT29 colon cancer cells. Biochimica et biophysica acta 1820:104-115.
58.Huang, L., S. Sankar, C. Lin, C.D. Kontos, A.D. Schroff, E.H. Cha, S.M. Feng, S.F. Li, Z. Yu, R.L. Van Etten, M.A. Blanar, and K.G. Peters. 1999. HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274:38183-38188.
59.Insinga, A., S. Monestiroli, S. Ronzoni, V. Gelmetti, F. Marchesi, A. Viale, L. Altucci, C. Nervi, S. Minucci, and P.G. Pelicci. 2005. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71-76.
60.Javerzat, S., P. Auguste, and A. Bikfalvi. 2002. The role of fibroblast growth factors in vascular development. Trends Mol Med 8:483-489.
61.Jiang, J., A. Thyagarajan-Sahu, V. Krchnak, A. Jedinak, G.E. Sandusky, and D. Sliva. 2012. NAHA, a novel hydroxamic acid-derivative, inhibits growth and angiogenesis of breast cancer in vitro and in vivo. PloS one 7:e34283.
62.Jin, H., L. Liang, L. Liu, W. Deng, and J. Liu. 2013. HDAC inhibitor DWP0016 activates p53 transcription and acetylation to inhibit cell growth in U251 glioblastoma cells. Journal of cellular biochemistry 114:1498-1509.
63.Jin, Y.H., K.J. Yoo, Y.H. Lee, and S.K. Lee. 2000. Caspase 3-mediated cleavage of p21WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. The Journal of biological chemistry 275:30256-30263.
64.Kappert, K., K.G. Peters, F.D. Bohmer, and A. Ostman. 2005. Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 65:587-598.
65.Kim, J.E., J. Chen, and Z. Lou. 2008. DBC1 is a negative regulator of SIRT1. Nature 451:583-586.
66.Kim, Y.B., S.W. Ki, M. Yoshida, and S. Horinouchi. 2000. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo) 53:1191-1200.
67.Knights, C.D., J. Catania, S. Di Giovanni, S. Muratoglu, R. Perez, A. Swartzbeck, A.A. Quong, X. Zhang, T. Beerman, R.G. Pestell, and M.L. Avantaggiati. 2006. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533-544.
68.Korkaya, H., S. Liu, and M.S. Wicha. 2011. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804-3809.
69.Kruse, J.P., and W. Gu. 2009. Modes of p53 regulation. Cell 137:609-622.
70.Kubota, Y. 2012. Tumor angiogenesis and anti-angiogenic therapy. The Keio journal of medicine 61:47-56.
71.Laptenko, O., and C. Prives. 2006. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951-961.
72.Le Boeuf, F., F. Houle, and J. Huot. 2004. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. The Journal of biological chemistry 279:39175-39185.
73.Lee, J., K.E. Kim, D.K. Choi, J.Y. Jang, J.J. Jung, H. Kiyonari, G. Shioi, W. Chang, T. Suda, N. Mochizuki, Y. Nakaoka, I. Komuro, O.J. Yoo, and G.Y. Koh. 2013. Angiopoietin-1 Guides Directional Angiogenesis Through Integrin alphavbeta5 Signaling for Recovery of Ischemic Retinopathy. Sci Transl Med 5:203ra127.
74.Levin, J.I. 2004. The design and synthesis of aryl hydroxamic acid inhibitors of MMPs and TACE. Curr Top Med Chem 4:1289-1310.
75.Levkau, B., H. Koyama, E.W. Raines, B.E. Clurman, B. Herren, K. Orth, J.M. Roberts, and R. Ross. 1998. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Molecular cell 1:553-563.
76.Li, C., J. Fan, X. Song, B. Zhang, Y. Chen, C. Li, K. Mi, H. Ma, Y. Song, X. Tao, and G. Li. 2013. Expression of angiopoietin-2 and vascular endothelial growth factor receptor-3 correlates with lymphangiogenesis and angiogenesis and affects survival of oral squamous cell carcinoma. PLoS One 8:e75388.
77.Li, F., X. Ling, H. Huang, L. Brattain, P. Apontes, J. Wu, L. Binderup, and M.G. Brattain. 2005. Differential regulation of survivin expression and apoptosis by vitamin D3 compounds in two isogenic MCF-7 breast cancer cell sublines. Oncogene 24:1385-1395.
78.Li, L.Y., X. Luo, and X. Wang. 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99.
79.Lim, S., and P. Kaldis. 2013. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079-3093.
80.Lohela, M., M. Bry, T. Tammela, and K. Alitalo. 2009. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154-165.
81.Lorenz, U. 2009. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol Rev 228:342-359.
82.Lowe, S.W., and A.W. Lin. 2000. Apoptosis in cancer. Carcinogenesis 21:485-495.
83.Luo, J., A.Y. Nikolaev, S. Imai, D. Chen, F. Su, A. Shiloh, L. Guarente, and W. Gu. 2001. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137-148.
84.Luo, J., F. Su, D. Chen, A. Shiloh, and W. Gu. 2000. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377-381.
85.Mai, A., S. Massa, D. Rotili, I. Cerbara, S. Valente, R. Pezzi, S. Simeoni, and R. Ragno. 2005. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 25:261-309.
86.Malumbres, M., and M. Barbacid. 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153-166.
87.Marchenko, N.D., and U.M. Moll. 2007. The role of ubiquitination in the direct mitochondrial death program of p53. Cell Cycle 6:1718-1723.
88.Matsumoto, T., S. Bohman, J. Dixelius, T. Berge, A. Dimberg, P. Magnusson, L. Wang, C. Wikner, J.H. Qi, C. Wernstedt, J. Wu, S. Bruheim, H. Mugishima, D. Mukhopadhyay, A. Spurkland, and L. Claesson-Welsh. 2005. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. The EMBO journal 24:2342-2353.
89.Matthews, R.J., D.B. Bowne, E. Flores, and M.L. Thomas. 1992. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 12:2396-2405.
90.Mattila, E., K. Auvinen, M. Salmi, and J. Ivaska. 2008. The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci 121:3570-3580.
91.Meek, D.W., and C.W. Anderson. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950.
92.Mehrotra, S., L.R. Languino, C.M. Raskett, A.M. Mercurio, T. Dohi, and D.C. Altieri. 2010. IAP regulation of metastasis. Cancer cell 17:53-64.
93.Mikolcevic, P., J. Rainer, and S. Geley. 2012. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell cycle 11:3758-3768.
94.Mita, A.C., M.M. Mita, S.T. Nawrocki, and F.J. Giles. 2008. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14:5000-5005.
95.Motzer, R.J., M.D. Michaelson, B.G. Redman, G.R. Hudes, G. Wilding, R.A. Figlin, M.S. Ginsberg, S.T. Kim, C.M. Baum, S.E. DePrimo, J.Z. Li, C.L. Bello, C.P. Theuer, D.J. George, and B.I. Rini. 2006. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24:16-24.
96.Nagy, J.A., A.M. Dvorak, and H.F. Dvorak. 2007. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2:251-275.
97.Nakagami, H., T.X. Cui, M. Iwai, T. Shiuchi, Y. Takeda-Matsubara, L. Wu, and M. Horiuchi. 2002. Tumor necrosis factor-alpha inhibits growth factor-mediated cell proliferation through SHP-1 activation in endothelial cells. Arterioscler Thromb Vasc Biol 22:238-242.
98.Nakamura, Y., N. Patrushev, H. Inomata, D. Mehta, N. Urao, H.W. Kim, M. Razvi, V. Kini, K. Mahadev, B.J. Goldstein, R. McKinney, T. Fukai, and M. Ushio-Fukai. 2008. Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ Res 102:1182-1191.
99.Nebbioso, A., N. Clarke, E. Voltz, E. Germain, C. Ambrosino, P. Bontempo, R. Alvarez, E.M. Schiavone, F. Ferrara, F. Bresciani, A. Weisz, A.R. de Lera, H. Gronemeyer, and L. Altucci. 2005. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11:77-84.
100.Neel, B.G., H. Gu, and L. Pao. 2003. The ''Shp''ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28:284-293.
101.Niculescu, A.B., 3rd, X. Chen, M. Smeets, L. Hengst, C. Prives, and S.I. Reed. 1998. Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629-643.
102.Nishida, N., H. Yano, T. Nishida, T. Kamura, and M. Kojiro. 2006. Angiogenesis in cancer. Vascular health and risk management 2:213-219.
103.Noble, M.E., J.A. Endicott, and L.N. Johnson. 2004. Protein kinase inhibitors: insights into drug design from structure. Science 303:1800-1805.
104.O''Connor, D.S., J.S. Schechner, C. Adida, M. Mesri, A.L. Rothermel, F. Li, A.K. Nath, J.S. Pober, and D.C. Altieri. 2000. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156:393-398.
105.Oberoi-Khanuja, T.K., A. Murali, and K. Rajalingam. 2013. IAPs on the move: role of inhibitors of apoptosis proteins in cell migration. Cell Death Dis 4:e784.
106.Ocker, M., and R. Schneider-Stock. 2007. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol 39:1367-1374.
107.Olsson, A.K., A. Dimberg, J. Kreuger, and L. Claesson-Welsh. 2006. VEGF receptor signalling - in control of vascular function. Nature reviews. Molecular cell biology 7:359-371.
108.Pan, S., and B.C. Berk. 2007. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circulation research 100:213-219.
109.Papapetropoulos, A., D. Fulton, K. Mahboubi, R.G. Kalb, D.S. O''Connor, F. Li, D.C. Altieri, and W.C. Sessa. 2000. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. The Journal of biological chemistry 275:9102-9105.
110.Poole, A.W., and M.L. Jones. 2005. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 17:1323-1332.
111.Pop, C., and G.S. Salvesen. 2009. Human caspases: activation, specificity, and regulation. The Journal of biological chemistry 284:21777-21781.
112.Qian, D.Z., Y. Kato, S. Shabbeer, Y. Wei, H.M. Verheul, B. Salumbides, T. Sanni, P. Atadja, and R. Pili. 2006. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clinical cancer research : an official journal of the American Association for Cancer Research 12:634-642.
113.Quaas, M., G.A. Muller, and K. Engeland. 2012. p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell cycle 11:4661-4672.
114.Ratner, M. 2004. Genentech discloses safety concerns over Avastin. Nature biotechnology 22:1198.
115.Risau, W. 1997. Mechanisms of angiogenesis. Nature 386:671-674.
116.Rock, E.P., V. Goodman, J.X. Jiang, K. Mahjoob, S.L. Verbois, D. Morse, R. Dagher, R. Justice, and R. Pazdur. 2007. Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. The oncologist 12:107-113.
117.Rodrigues, G.C., D.F. Feijo, M.T. Bozza, P. Pan, D. Vullo, S. Parkkila, C.T. Supuran, C. Capasso, A.P. Aguiar, and A.B. Vermelho. 2014. Design, synthesis, and evaluation of hydroxamic acid derivatives as promising agents for the management of Chagas disease. J Med Chem 57:298-308.
118.Roy, S., K. Packman, R. Jeffrey, and M. Tenniswood. 2005. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell death and differentiation 12:482-491.
119.Ruefli, A.A., M.J. Ausserlechner, D. Bernhard, V.R. Sutton, K.M. Tainton, R. Kofler, M.J. Smyth, and R.W. Johnstone. 2001. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 98:10833-10838.
120.Ruiz de Almodovar, C., D. Lambrechts, M. Mazzone, and P. Carmeliet. 2009. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 89:607-648.
121.Salvesen, G.S., and V.M. Dixit. 1997. Caspases: intracellular signaling by proteolysis. Cell 91:443-446.
122.Salvesen, G.S., and C.S. Duckett. 2002. IAP proteins: blocking the road to death''s door. Nat Rev Mol Cell Biol 3:401-410.
123.Satyanarayana, A., and P. Kaldis. 2009. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28:2925-2939.
124.Semenza, G.L. 2003. Targeting HIF-1 for cancer therapy. Nature reviews. Cancer 3:721-732.
125.Seo, D.W., H. Li, C.K. Qu, J. Oh, Y.S. Kim, T. Diaz, B. Wei, J.W. Han, and W.G. Stetler-Stevenson. 2006. Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem 281:3711-3721.
126.Singh, T.R., S. Shankar, and R.K. Srivastava. 2005. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 24:4609-4623.
127.Somanath, P.R., O.V. Razorenova, J. Chen, and T.V. Byzova. 2006. Akt1 in endothelial cell and angiogenesis. Cell Cycle 5:512-518.
128.Song, Q., S.P. Lees-Miller, S. Kumar, Z. Zhang, D.W. Chan, G.C. Smith, S.P. Jackson, E.S. Alnemri, G. Litwack, K.K. Khanna, and M.F. Lavin. 1996. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. The EMBO journal 15:3238-3246.
129.Song, Y., F. Dai, D. Zhai, Y. Dong, J. Zhang, B. Lu, J. Luo, M. Liu, and Z. Yi. 2012. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis 15:421-432.
130.Stegh, A.H., and R.A. DePinho. 2011. Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell cycle 10:33-38.
131.Sugano, M., K. Tsuchida, T. Maeda, and N. Makino. 2007. SiRNA targeting SHP-1 accelerates angiogenesis in a rat model of hindlimb ischemia. Atherosclerosis 191:33-39.
132.Sun, Z., X. Li, S. Massena, S. Kutschera, N. Padhan, L. Gualandi, V. Sundvold-Gjerstad, K. Gustafsson, W.W. Choy, G. Zang, M. Quach, L. Jansson, M. Phillipson, M.R. Abid, A. Spurkland, and L. Claesson-Welsh. 2012. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. The Journal of experimental medicine 209:1363-1377.
133.Susin, S.A., H.K. Lorenzo, N. Zamzami, I. Marzo, B.E. Snow, G.M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D.R. Goodlett, R. Aebersold, D.P. Siderovski, J.M. Penninger, and G. Kroemer. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441-446.
134.Suzuki, A., M. Hayashida, T. Ito, H. Kawano, T. Nakano, M. Miura, K. Akahane, and K. Shiraki. 2000. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene 19:3225-3234.
135.Takahashi, T., S. Yamaguchi, K. Chida, and M. Shibuya. 2001a. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. The EMBO journal 20:2768-2778.
136.Takahashi, T., S. Yamaguchi, K. Chida, and M. Shibuya. 2001b. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. The EMBO journal 20:2768-2778.
137.Tang, Y., W. Zhao, Y. Chen, Y. Zhao, and W. Gu. 2008. Acetylation is indispensable for p53 activation. Cell 133:612-626.
138.Thairu, N., S. Kiriakidis, P. Dawson, and E. Paleolog. 2011. Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis 14:223-234.
139.Toledo, F., and G.M. Wahl. 2006. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909-923.
140.Tricot, O., Z. Mallat, C. Heymes, J. Belmin, G. Leseche, and A. Tedgui. 2000. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101:2450-2453.
141.Tzao, C., J.S. Jin, B.H. Chen, H.Y. Chung, C.C. Chang, T.Y. Hsu, and G.H. Sun. 2013. Anticancer effects of suberoylanilide hydroxamic acid in esophageal squamous cancer cells in vitro and in vivo. Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus / I.S.D.E
142.Vaziri, H., S.K. Dessain, E. Ng Eaton, S.I. Imai, R.A. Frye, T.K. Pandita, L. Guarente, and R.A. Weinberg. 2001. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149-159.
143.Venugopal, B., R. Baird, R.S. Kristeleit, R. Plummer, R. Cowan, A. Stewart, N. Fourneau, P. Hellemans, Y. Elsayed, S. McClue, J.W. Smit, A. Forslund, C. Phelps, J. Camm, T.R. Evans, J.S. de Bono, and U. Banerji. 2013. A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clinical cancer research : an official journal of the American Association for Cancer Research 19:4262-4272.
144.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131-149.
145.Vousden, K.H., and D.P. Lane. 2007. p53 in health and disease. Nat Rev Mol Cell Biol 8:275-283.
146.Wang, P., H. Zhen, J. Zhang, W. Zhang, R. Zhang, X. Cheng, G. Guo, X. Mao, J. Wang, and X. Zhang. 2012. Survivin promotes glioma angiogenesis through vascular endothelial growth factor and basic fibroblast growth factor in vitro and in vivo. Mol Carcinog 51:586-595.
147.Weis, S.M., and D.A. Cheresh. 2011. Tumor angiogenesis: molecular pathways and therapeutic targets. Nature medicine 17:1359-1370.
148.Won, M.S., N. Im, S. Park, S.K. Boovanahalli, Y. Jin, X. Jin, K.S. Chung, M. Kang, K. Lee, S.K. Park, H.M. Kim, B.M. Kwon, and J.J. Lee. 2009. A novel benzimidazole analogue inhibits the hypoxia-inducible factor (HIF)-1 pathway. Biochem Biophys Res Commun 385:16-21.
149.Wu, L.W., L.D. Mayo, J.D. Dunbar, K.M. Kessler, M.R. Baerwald, E.A. Jaffe, D. Wang, R.S. Warren, and D.B. Donner. 2000a. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem 275:5096-5103.
150.Wu, L.W., L.D. Mayo, J.D. Dunbar, K.M. Kessler, O.N. Ozes, R.S. Warren, and D.B. Donner. 2000b. VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 275:6059-6062.
151.Xiang, R., N. Mizutani, Y. Luo, C. Chiodoni, H. Zhou, M. Mizutani, Y. Ba, J.C. Becker, and R.A. Reisfeld. 2005. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 65:553-561.
152.Xu, W.S., R.B. Parmigiani, and P.A. Marks. 2007. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541-5552.
153.Xu, Y. 2003. Regulation of p53 responses by post-translational modifications. Cell death and differentiation 10:400-403.
154.Yamaguchi, H., N.T. Woods, L.G. Piluso, H.H. Lee, J. Chen, K.N. Bhalla, A. Monteiro, X. Liu, M.C. Hung, and H.G. Wang. 2009. p53 acetylation is crucial for its transcription-independent proapoptotic functions. The Journal of biological chemistry 284:11171-11183.
155.Yancopoulos, G.D., S. Davis, N.W. Gale, J.S. Rudge, S.J. Wiegand, and J. Holash. 2000. Vascular-specific growth factors and blood vessel formation. Nature 407:242-248.
156.Yang, Y., S. Zhao, and J. Song. 2004. Caspase-dependent apoptosis and -independent poly(ADP-ribose) polymerase cleavage induced by transforming growth factor beta1. Int J Biochem Cell Biol 36:223-234.
157.Yuan, L., C. Wagatsuma, B. Sun, J.H. Kim, and Y.J. Surh. 2003. The role of beta-glucuronidase in induction of apoptosis by genistein combined polysaccharide (GCP) in xenogeneic mice bearing human mammary cancer cells. Annals of the New York Academy of Sciences 1010:347-349.
158.Zachary, I. 2003. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31:1171-1177.
159.Zachary, I., and G. Gliki. 2001. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568-581.
160.Zeng, H., S. Sanyal, and D. Mukhopadhyay. 2001. Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. The Journal of biological chemistry 276:32714-32719.
161.Zetter, B.R. 2008. The scientific contributions of M. Judah Folkman to cancer research. Nature reviews. Cancer 8:647-654.
162.Zhang, S., Z. Cao, H. Tian, G. Shen, Y. Ma, H. Xie, Y. Liu, C. Zhao, S. Deng, Y. Yang, R. Zheng, W. Li, N. Zhang, S. Liu, W. Wang, L. Dai, S. Shi, L. Cheng, Y. Pan, S. Feng, X. Zhao, H. Deng, S. Yang, and Y. Wei. 2011. SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 17:4439-4450.
163.Zhang, X.D., S.K. Gillespie, J.M. Borrow, and P. Hersey. 2004. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3:425-435.
164.Zhang, Y., N. Fujita, and T. Tsuruo. 1999. Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene 18:1131-1138.
165.Zhao, W., J.P. Kruse, Y. Tang, S.Y. Jung, J. Qin, and W. Gu. 2008. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451:587-590.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊