(54.236.58.220) 您好!臺灣時間:2021/03/08 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪鐸育
研究生(外文):To-Yu Hung
論文名稱:合成4-甲氧基苯磺醯胺作為抗癌試劑
論文名稱(外文):Synthesis of 4-methoxybenzenesulfonamides as anticancer agents
指導教授:劉景平劉景平引用關係
口試委員:胡明寬陳繼明
口試日期:2015-06-25
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:167
中文關鍵詞:抗癌製劑苯磺醯胺類
外文關鍵詞:anticancer agentsbenzenesulfonamides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
由於突變、基因的過度表現,導致後生酶(Epigenetic enzymes)的失調、不正
常的作用,導致腫瘤的產生。組蛋白去乙醯酶(HDACs),就是其中一種目前已知
的後生酶,其在基因的表現中扮演重要的調節者。HDACs 的作用為從組蛋白上
將乙醯基團移除,使得帶負電的DNA 會與帶正電的組蛋白纏繞的更緊密,使得
基因不被表現。然而,根據文獻指出,於癌細胞抑制HDACs 的活性,可以增加
組蛋白之乙醯化,與抗增殖作用有關,具有抗癌活性,除此之外,後來的研究
發現,其抗癌活性也與非組蛋白之乙醯化有關係。因此,近年來開發一系列的
HDAC 抑制劑,阻斷不正常的去乙醯化作用。根據文獻指出,發現hyroxamic acid之官能基團可與HDACs 之鋅離子鍵結位置產生鍵結,抑制HDACs 的活性。
ABT-751 是一種新穎的微管蛋白結合劑(tubulin-binding agent)和抗有絲分裂劑(antimitotic agent)。ABT-751 鍵結在s-tubulin 的colchicine site,抑制微管的聚合,其阻斷細胞週期之G2/M phase,藉而抑制有絲分裂的進行,具有開發成抗癌藥物的潛力。根據實驗室先前經驗發現ABT-751 之
4-methoxybenzenesulfonamides 在抗癌活性為重要的結構,因此,我們想要保留ABT-751 的4-methoxybenzenesulfonamides 結構,且將其極性基團之hydroxyl group 改為hyroxamic acid,期許有更好的抗癌活性。最後,我們可以從初步的活性數據看出,化合物22b 具有良好的選擇性抑制HDAC6 活性,且對於抑制癌細胞也有不錯的活性,期許更完整的活性數據,可以繼續探討結構與活性的關係,以作更進一步的延伸合成。
Epigenetic enzymes are often dysregulated in tumors through mutation, altered expression, or inappropriate recruitment to certain loci. The identification of these enzymes and their partner proteins has driven the rapid development of
small-molecule inhibitors that target the cancer epigenome. Acetylation is generally associated with elevated transcription while deacetylated histones are often associated with gene repression. Histone deacetylases (HDACs) are critical regulators of gene expression that enzymatically remove the acetyl group from histones.
ABT-751 was shown to reversibly bind to the colchicine site of β-tubulin, thereby halting mitosis. Furthermore, the structure of ABT-751 inserting with hydroxamic acid, recently study indicated the hydroxamic acid can interact with zinc2+ binding site of HDAC catalytic pocket, was modified into a novel class of HDAC inhibitors.
Finally pharmacological data shows 22b has selective HDAC6 enzymatic activity and 41b has good antitumor activity.
目錄
目錄...................................................... I
圖目錄................................................... III
表目錄 ................................................... IV
流程目錄 ................................................. IV
附圖目錄 .................................................. V
中文摘要 ............................................... VIII
Abstract ................................................ IX
壹、前言 ...................................................1
1.1 背景介紹 ...............................................1
1.2 表觀遺傳學 (epigenetics)................................3
1.3 組蛋白 (histone) .......................................5
1.4 組蛋白之乙醯化和去乙醯化 ...........................................................6
1.5 組蛋白去乙醯酶之種類以及分布 ...............................7
1.6 HDAC 與癌症的關係 ......................................10
1.7 目前臨床發展中之HDAC 抑制劑...............................12
1.7.1 Vorinostat .........................................15
1.7.2 Depsipeptide .......................................16
1.7.3 Belinostat .........................................17
II
貳、實驗目的與設計 ..........................................18
2.1 化合物之構想與設計.......................................18
2.2 化合物之結構活性關係探討 .................................22
參、化合物合成 .............................................24
肆、實驗部分 ...............................................34
4.1 實驗儀器和檢驗方法.......................................34
4.2 實驗藥品和溶劑 .........................................34
4.3 試劑之縮寫 ............................................35
4.4 生物活性試驗與步驟.......................................36
伍、化合物合成步驟 ..........................................38
陸、結果與討論 .............................................66
6.1 化學合成 ..............................................66
6.2 藥理活性 ..............................................67
柒.參考文獻................................................72
附錄 .....................................................78
柒.參考文獻
1. 行政院衛生福利部 http://www.moi.gov.tw/stat/index.aspx
2. Kukucka, J.; Wyllie, T.; Read, J.; Mahoney, L.; Suphioglu, C. Human neuronal
cells: epigenetic aspects. Biomol. Concepts 2013, 4, 319-333.
3. Pandian, G. N.; Sugiyama, H. Strategies to modulate heritable epigenetic defects
in cellular machinery: lessons from nature. Pharmaceuticals (Basel). 2012, 6,
1-24.
4. http://oregonstate.edu/instruction/bi314/summer09/genome.html
5. http://www.stomponstep1.com/epigenetics-prader-willi-sydrome-angelman-syndr
ome/
6. Mottamal, M.; Zheng, S.; Huang, T. L.; Wang, G. Histone deacetylase inhibitors
in clinical studies as templates for new anticancer agents. Molecules. 2015, 20,
3898-3941.
7. Li, Z.; Zhu, W. G. Targeting histone deacetylases for cancer therapy: from
molecular mechanisms to clinical implications. Int. J. Biol. Sci. 2014, 10,
757-770.
8. Ververis, K.; Hiong, A.; Karagiannis, T. C.; Licciardi, P. V. Histone deacetylase
inhibitors (HDACIs): multitargeted anticancer agents. Biologics. 2013, 7, 47-60.
9. Kelly, W. K.; O’Connor, O. A.; Krug, L. M.; Chiao, J. H.; Heaney, M.; Curley,
T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J. P.; Schwartz, L.; Richardson,
S.; Chu, E.; Olgac, S.; Marks, P. A.; Scher H.; Richon V. M. Phase I study of an
oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients
with advanced cancer. J. Clin. Oncol. 2005, 23, 3923–3931.
10. Shi, W.; Lawrence, Y. R.; Choy, H.; Werner-Wasik, M.; Andrews, D. W.; Evans,
73
J. J.; Judy, K. D.; Farrell, C. J.; Moshel, Y.; Berger, A. C.; Bar-Ad, V.; Dicker, A.
P. Vorinostat as a radiosensitizer for brain metastasis: A phase I clinical trial. J.
Neurooncol. 2014, 118, 313–319.
11. Sarfstein, R.; Bruchim, I.; Fishman, A.; Werner, H. The mechanism of action of
the histone deacetylase inhibitor vorinostat involves interaction with the
insulin-like growth factor signaling pathway. PLoS. One. 2011, 6, e24468.
12. Ma, T.; Galimberti, F.; Erkmen, C. P.; Memoli, V.; Chinyengetere, F.; Sempere,
L.; Beumer, J. H.; Anyang, B. N.; Nugent, W.; Johnstone, D.; Tsongalis, G. J.;
Kurie, J. M.; Li, H.; Direnzo, J.; Guo, Y.; Freemantle, S. J.; Dragnev, K. H.;
Dmitrovsky, E. Comparing histone deacetylase inhibitor responses in genetically
engineered mouse lung cancer models and a window of opportunity trial in
patients with lung cancer. Mol. Cancer Ther. 2013, 12, 1545–1555.
13. Saelen, M. G.; Ree, A. H.; Kristian, A.; Fleten, K. G.; Furre, T.; Hektoen, H. H.;
Flatmark, K. Radiosensitization by the histone deacetylase inhibitor vorinostat
under hypoxia and with capecitabine in experimental colorectal carcinoma.
Radiat. Oncol. 2012, 7, 165.
14. Oki, Y.; Younes, A.; Copeland, A.; Hagemeister, F.; Fayad, L. E.; McLaughlin,
P.; Shah, J.; Fowler, N.; Romaguera, J.; Kwak, L. W.; Pro, B. Phase I study of
vorinostat in combination with standard chop in patients with newly diagnosed
peripheral T-cell lymphoma. Br. J. Haematol. 2013, 162, 138–141.
15. Doi, T.; Hamaguchi, T.; Shirao, K.; Chin, K.; Hatake, K.; Noguchi, K.; Otsuki,
T.; Mehta, A.; Ohtsu, A. Evaluation of safety, pharmacokinetics, and efficacy of
vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI)
cancer in a phase I clinical trial. Int. J. Clin. Oncol. 2013, 18, 87–95.
16. Karthik, S.; Sankar, R.; Varunkumar, K.; Ravikumar, V. Romidepsin induces
74
cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix
metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell
lung cancer cells. Biomed. Pharmacother. 2014, 68, 327–334.
17. Robertson, F. M.; Chu, K.; Boley, K. M.; Ye, Z.; Liu, H.; Wright, M. C.; Moraes,
R.; Zhang, X.; Green, T. L.; Barsky, S. H.; Heise, C.; Cristofanilli, M. The class I
HDAC inhibitor romidepsin targets inflammatory breast cancer tumor emboli
and synergizes with paclitaxel to inhibit metastasis. J. Exp. Ther. Oncol. 2013,
10, 219–233.
18. Jones, S. F.; Infante, J. R.; Spigel, D. R.; Peacock, N. W.; Thompson, D. S.;
Greco, F. A.; McCulloch, W.; Burris, H. A. 3rd. Phase I results from a study of
romidepsin in combination with gemcitabine in patients with advanced solid
tumors. Cancer Investig. 2012, 30, 481–486.
19. Amiri-Kordestani, L.; Luchenko, V.; Peer, C. J.; Ghafourian, K.; Reynolds, J.;
Draper, D.; Frye, R.; Woo, S.; Venzon, D.; Wright, J.; Skarulis, M.; Figg, W. D.;
Fojo, T.; Bates, S. E.; Piekarz, R. L. Phase I trial of a new schedule of
romidepsin in patients with advanced cancers. Clin. Cancer Res. 2013, 19,
4499–4507.
20. Mackay, H. J.; Hirte, H.; Colgan, T.; Covens, A.; MacAlpine, K.; Grenci, P.;
Wang, L.; Mason, J.; Pham, P. A.; Tsao, M. S.; Pan J., Zwiebel, J., Oza, A. M.
Phase II trial of the histone deacetylase inhibitor belinostat in women with
platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian
tumours. Eur. J. Cancer 2010, 46, 1573–1579.
21. Cashen, A.; Juckett, M.; Jumonville, A.; Litzow, M.; Flynn, P. J.; Eckardt, J.;
LaPlant, B.; Laumann, K.; Erlichman, C.; DiPersio, J. Phase II study of the
histone deacetylase inhibitor belinostat (PXD101) for the treatment of
75
myelodysplastic syndrome (MDS). Ann. Hematol. 2012, 91, 33–38.
22. Dizon, D. S.; Blessing, J. A.; Penson, R. T.; Drake, R. D.; Walker, J. L.;
Johnston, C. M.; Disilvestro, P. A.; Fader, A. N. A phase II evaluation of
belinostat and carboplatin in the treatment of recurrent or persistent
platinum-resistant ovarian, fallopian tube, or primary peritoneal carcinoma: A
gynecologic oncology group study. Gynecol. Oncol. 2012, 125, 367–371.
23. Kirschbaum, M. H.; Foon, K. A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.
M.; Newman, E. M. A phase 2 study of belinostat (PXD101) in patients with
relapsed or refractory acute myeloid leukemia or patients over the age of 60 with
newly diagnosed acute myeloid leukemia: A california cancer consortium study.
Leuk. Lymphoma 2014, 55, 2301–2304.
24. Thomas, A.; Rajan, A.; Szabo, E.; Tomita, Y.; Carter, C. A.; Scepura, B.;
Lopez-Chavez, A.; Lee, M. J.; Redon, C. E.; Frosch, A.; Peer, C. J.; Chen, Y.;
Piekarz, R.; Steinberg, S. M.; Trepel, J. B.; Figg, W. D.; Schrump, D. S.,
Giaccone, G. A phase I/II trial of belinostat in combination with cisplatin,
doxorubicin and cyclophosphamide in thymic epithelial tumors: A clinical and
translational study. Clin. Cancer Res. 2014, 20, 5392–5402.
25. Ma, B. B.; Sung, F.; Tao, Q.; Poon, F. F.; Lui, V. W.; Yeo, W.; Chan, S. L.;
Chan, A. T. The preclinical activity of the histone deacetylase inhibitor PXD101
(belinostat) in hepatocellular carcinoma cell lines. Investig. New Drugs 2010, 28,
107–114.
26. Savickiene, J.; Treigyte, G.; Valiuliene, G.; Stirblyte, I.; Navakauskiene, R.
Epigenetic and molecular mechanisms underlying the antileukemic activity of
the histone deacetylase inhibitor belinostat in human acute promyelocytic
leukemia cells. Anticancer Drugs 2014, 25, 938–949.
76
27. Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Koyanagi, N.;
Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.;
Kitoh, K. Novel sulfonamides as potential, systemically active antitumor agents.
J. Med. Chem. 1992, 35, 2496-2497.
28. Jorgensen, T. J.; Tian, H.; Joseph, I. B.; Menon, K.; Frost, D. Chemosensitization
and radiosensitization of human lung and colon cancers by antimitotic agent,
ABT-751, in athymic murine xenograft models of subcutaneous tumor growth.
Cancer Chemother. Pharmacol. 2007, 59, 725-732.
29. Okoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T.; Sugi, N. H.; Yoshimatsu, K.;
Yoshino, H.; Owa, T. Profiling novel sulfonamide antitumor agents with
cell-based phenotypic screens and array-based gene expression analysis. Mol.
Cancer. Ther. 2002, 1, 275-286.
30. Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors:
from bench to clinic. J. Med. Chem. 2008, 51, 1505-1529.
31. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks,
P. A.; Breslow, R.; Pavletich, N. P. Structures of a histone deacetylase homologue
bound to the TSA and SAHA inhibitors. Nature 1999, 401, 188-193.
32. Falkenberg, K. J.; Johnstone, R. W. Histone deacetylases and their inhibitors in
cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov.
2014, 13, 673-691.
33. Lee, H. Y.; Tsai, A. C.; Chen, M. C.; Shen, P. J.; Cheng, Y. C.; Kuo, C. C.; Pan, S.
L.; Liu, Y. M.; Liu, J. F.; Yeh, T. K.; Wang, J. C.; Chang, C. Y.; Chang, J. Y.; Liou,
J. P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone
deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116
cells. J. Med. Chem. 2014, 57, 4009-4022.
77
34. Liu, Y. M.; Lee, H. Y.; Chen, C. H.; Lee, C. H.; Wang, L. T.; Pan, S. L.; Lai, M. J.;
Yeh, T. K.; Liou, J. P.
1-Arylsulfonyl-5-(N-hydroxyacrylamide)tetrahydroquinolines as potent histone
deacetylase inhibitors suppressing the growth of prostate cancer cells. Eur. J.
Med. Chem. 2015, 89, 320-330.
35. Lai, M. J.; Huang, H. L.; Pan, S. L.; Liu, Y. M.; Peng, C. Y.; Lee, H. Y.; Yeh, T.
K.; Huang, P. H.; Teng, C. M.; Chen, C. S.; Chuang, H. Y.; Liou, J. P. Synthesis
and biological evaluation of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as
potent histone deacetylase inhibitors with antitumor activity in vivo. J. Med.
Chem. 2012, 55, 3777-3791.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔