|
柒.參考文獻 1. 行政院衛生福利部 http://www.moi.gov.tw/stat/index.aspx 2. Kukucka, J.; Wyllie, T.; Read, J.; Mahoney, L.; Suphioglu, C. Human neuronal cells: epigenetic aspects. Biomol. Concepts 2013, 4, 319-333. 3. Pandian, G. N.; Sugiyama, H. Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals (Basel). 2012, 6, 1-24. 4. http://oregonstate.edu/instruction/bi314/summer09/genome.html 5. http://www.stomponstep1.com/epigenetics-prader-willi-sydrome-angelman-syndr ome/ 6. Mottamal, M.; Zheng, S.; Huang, T. L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015, 20, 3898-3941. 7. Li, Z.; Zhu, W. G. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int. J. Biol. Sci. 2014, 10, 757-770. 8. Ververis, K.; Hiong, A.; Karagiannis, T. C.; Licciardi, P. V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics. 2013, 7, 47-60. 9. Kelly, W. K.; O’Connor, O. A.; Krug, L. M.; Chiao, J. H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J. P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P. A.; Scher H.; Richon V. M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 3923–3931. 10. Shi, W.; Lawrence, Y. R.; Choy, H.; Werner-Wasik, M.; Andrews, D. W.; Evans, 73 J. J.; Judy, K. D.; Farrell, C. J.; Moshel, Y.; Berger, A. C.; Bar-Ad, V.; Dicker, A. P. Vorinostat as a radiosensitizer for brain metastasis: A phase I clinical trial. J. Neurooncol. 2014, 118, 313–319. 11. Sarfstein, R.; Bruchim, I.; Fishman, A.; Werner, H. The mechanism of action of the histone deacetylase inhibitor vorinostat involves interaction with the insulin-like growth factor signaling pathway. PLoS. One. 2011, 6, e24468. 12. Ma, T.; Galimberti, F.; Erkmen, C. P.; Memoli, V.; Chinyengetere, F.; Sempere, L.; Beumer, J. H.; Anyang, B. N.; Nugent, W.; Johnstone, D.; Tsongalis, G. J.; Kurie, J. M.; Li, H.; Direnzo, J.; Guo, Y.; Freemantle, S. J.; Dragnev, K. H.; Dmitrovsky, E. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol. Cancer Ther. 2013, 12, 1545–1555. 13. Saelen, M. G.; Ree, A. H.; Kristian, A.; Fleten, K. G.; Furre, T.; Hektoen, H. H.; Flatmark, K. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma. Radiat. Oncol. 2012, 7, 165. 14. Oki, Y.; Younes, A.; Copeland, A.; Hagemeister, F.; Fayad, L. E.; McLaughlin, P.; Shah, J.; Fowler, N.; Romaguera, J.; Kwak, L. W.; Pro, B. Phase I study of vorinostat in combination with standard chop in patients with newly diagnosed peripheral T-cell lymphoma. Br. J. Haematol. 2013, 162, 138–141. 15. Doi, T.; Hamaguchi, T.; Shirao, K.; Chin, K.; Hatake, K.; Noguchi, K.; Otsuki, T.; Mehta, A.; Ohtsu, A. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial. Int. J. Clin. Oncol. 2013, 18, 87–95. 16. Karthik, S.; Sankar, R.; Varunkumar, K.; Ravikumar, V. Romidepsin induces 74 cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells. Biomed. Pharmacother. 2014, 68, 327–334. 17. Robertson, F. M.; Chu, K.; Boley, K. M.; Ye, Z.; Liu, H.; Wright, M. C.; Moraes, R.; Zhang, X.; Green, T. L.; Barsky, S. H.; Heise, C.; Cristofanilli, M. The class I HDAC inhibitor romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J. Exp. Ther. Oncol. 2013, 10, 219–233. 18. Jones, S. F.; Infante, J. R.; Spigel, D. R.; Peacock, N. W.; Thompson, D. S.; Greco, F. A.; McCulloch, W.; Burris, H. A. 3rd. Phase I results from a study of romidepsin in combination with gemcitabine in patients with advanced solid tumors. Cancer Investig. 2012, 30, 481–486. 19. Amiri-Kordestani, L.; Luchenko, V.; Peer, C. J.; Ghafourian, K.; Reynolds, J.; Draper, D.; Frye, R.; Woo, S.; Venzon, D.; Wright, J.; Skarulis, M.; Figg, W. D.; Fojo, T.; Bates, S. E.; Piekarz, R. L. Phase I trial of a new schedule of romidepsin in patients with advanced cancers. Clin. Cancer Res. 2013, 19, 4499–4507. 20. Mackay, H. J.; Hirte, H.; Colgan, T.; Covens, A.; MacAlpine, K.; Grenci, P.; Wang, L.; Mason, J.; Pham, P. A.; Tsao, M. S.; Pan J., Zwiebel, J., Oza, A. M. Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. Eur. J. Cancer 2010, 46, 1573–1579. 21. Cashen, A.; Juckett, M.; Jumonville, A.; Litzow, M.; Flynn, P. J.; Eckardt, J.; LaPlant, B.; Laumann, K.; Erlichman, C.; DiPersio, J. Phase II study of the histone deacetylase inhibitor belinostat (PXD101) for the treatment of 75 myelodysplastic syndrome (MDS). Ann. Hematol. 2012, 91, 33–38. 22. Dizon, D. S.; Blessing, J. A.; Penson, R. T.; Drake, R. D.; Walker, J. L.; Johnston, C. M.; Disilvestro, P. A.; Fader, A. N. A phase II evaluation of belinostat and carboplatin in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal carcinoma: A gynecologic oncology group study. Gynecol. Oncol. 2012, 125, 367–371. 23. Kirschbaum, M. H.; Foon, K. A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J. M.; Newman, E. M. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: A california cancer consortium study. Leuk. Lymphoma 2014, 55, 2301–2304. 24. Thomas, A.; Rajan, A.; Szabo, E.; Tomita, Y.; Carter, C. A.; Scepura, B.; Lopez-Chavez, A.; Lee, M. J.; Redon, C. E.; Frosch, A.; Peer, C. J.; Chen, Y.; Piekarz, R.; Steinberg, S. M.; Trepel, J. B.; Figg, W. D.; Schrump, D. S., Giaccone, G. A phase I/II trial of belinostat in combination with cisplatin, doxorubicin and cyclophosphamide in thymic epithelial tumors: A clinical and translational study. Clin. Cancer Res. 2014, 20, 5392–5402. 25. Ma, B. B.; Sung, F.; Tao, Q.; Poon, F. F.; Lui, V. W.; Yeo, W.; Chan, S. L.; Chan, A. T. The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines. Investig. New Drugs 2010, 28, 107–114. 26. Savickiene, J.; Treigyte, G.; Valiuliene, G.; Stirblyte, I.; Navakauskiene, R. Epigenetic and molecular mechanisms underlying the antileukemic activity of the histone deacetylase inhibitor belinostat in human acute promyelocytic leukemia cells. Anticancer Drugs 2014, 25, 938–949. 76 27. Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. 1992, 35, 2496-2497. 28. Jorgensen, T. J.; Tian, H.; Joseph, I. B.; Menon, K.; Frost, D. Chemosensitization and radiosensitization of human lung and colon cancers by antimitotic agent, ABT-751, in athymic murine xenograft models of subcutaneous tumor growth. Cancer Chemother. Pharmacol. 2007, 59, 725-732. 29. Okoi, A.; Kuromitsu, J.; Kawai, T.; Nagasu, T.; Sugi, N. H.; Yoshimatsu, K.; Yoshino, H.; Owa, T. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol. Cancer. Ther. 2002, 1, 275-286. 30. Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 1505-1529. 31. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401, 188-193. 32. Falkenberg, K. J.; Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673-691. 33. Lee, H. Y.; Tsai, A. C.; Chen, M. C.; Shen, P. J.; Cheng, Y. C.; Kuo, C. C.; Pan, S. L.; Liu, Y. M.; Liu, J. F.; Yeh, T. K.; Wang, J. C.; Chang, C. Y.; Chang, J. Y.; Liou, J. P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem. 2014, 57, 4009-4022. 77 34. Liu, Y. M.; Lee, H. Y.; Chen, C. H.; Lee, C. H.; Wang, L. T.; Pan, S. L.; Lai, M. J.; Yeh, T. K.; Liou, J. P. 1-Arylsulfonyl-5-(N-hydroxyacrylamide)tetrahydroquinolines as potent histone deacetylase inhibitors suppressing the growth of prostate cancer cells. Eur. J. Med. Chem. 2015, 89, 320-330. 35. Lai, M. J.; Huang, H. L.; Pan, S. L.; Liu, Y. M.; Peng, C. Y.; Lee, H. Y.; Yeh, T. K.; Huang, P. H.; Teng, C. M.; Chen, C. S.; Chuang, H. Y.; Liou, J. P. Synthesis and biological evaluation of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as potent histone deacetylase inhibitors with antitumor activity in vivo. J. Med. Chem. 2012, 55, 3777-3791.
|