|
1.World Health Organization http://www.who.int/en/ 2.行政院衛生福利部 http://www.mohw.gov.tw/CHT/Ministry/Index.aspx 3.Dumontet, C; Jordan, M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790-803. 4.Conde, C; Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 2009, 10, 319-332. 5.Walczak, C. E; Cai, S.; Khodjakov, A. Mechanisms of chromosome behavior during mitosis. Nat. Rev. Mol. Cell Biol. 2010, 11, 91-102. 6.Jordan, M. A; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253-265. 7.Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 2010, 10, 194-204. 8.Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182-1186. 9.Tozer, G. M; Kanthou, C; Baguley, B. C. Disrupting tumour blood vessels. Nat. Rev. Cancer 2005, 5, 423-435. 10.Siemann, D. W. Vascular-Targeted Therapies in Oncology. John Wiley & Sons, Ltd. 11.Siemann, D. W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 2011, 37, 63-74. 12.Hollebecque, A.; Massard, C.; Soria, J. C. Vascular disrupting agents: a delicate balance between efficacy and side effects. Curr. Opin. Oncol. 2012, 24, 305-315. 13.Pettit, G. R.; Cragg, G. M.; Herald, D.; Schmidt, J. M.; Lohavanijaya, P. Isolation and structure of combretastatin. Can. J. Chem. 1982, 60, 1374-1376. 14.Dark, G. G.; Hill, S. A.; Prise, V. E.; Tozer, G. M.; Pettit, G. R.; Chaplin, D. J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997, 57, 1829-1834. 15.http://clinicaltrials.gov/ct2/home 16.Delmonte A1, Sessa C. AVE8062: a new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs 2009, 18, 1541-1548. 17.Siemann, D. W.; Chaplin, D. J.; Walicke, P. A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin. Investig. Drugs 2009, 18, 189-197. 18.Fox, E.; Mosse'', Y. P.; Meany, H. M.; Gurney, J. G.; Khanna, G.; Jackson, H. A.; Gordon, G.; Shusterman, S.; Park, J. R.; Cohn, S. L.; Adamson, P. C.; London, W. B.; Maris, J. M.; Balis, F. M. Time to disease progression in children with relapsed or refractory neuroblastoma treated with ABT-751: a report from the Children''s Oncology Group (ANBL0621). Pediatr. Blood Cancer. 2014, 61, 990-996. 19.Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S. X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions. J. Med. Chem. 2007, 50, 2858-2864. 20.Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. Medicinal chemistry of combretastatin A4: present and future directions. J. Med. Chem. 2006, 49, 3033-3044. 21.Chen, S. M.; Meng, L. H.; Ding, J. New microtubule-inhibiting anticancer agents. Expert Opin. Invest. Drugs 2010, 3, 329−343. 22.Liu, Y. M.; Chen, H. L.; Lee, H. Y.; Liou, J. P. Tubulin inhibitors: a patent review. Expert Opin. Ther. Pat. 2014, 24, 69-88. 23.Kaur, R.; Kaur, G.; Gill, R. K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem. 2014, 87, 89-124. 24.Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.; Pettit, R. K. Antineoplastic agents. 379. Synthesis of phenstatin phosphate. J. Med. Chem. 1998, 41, 1688-1695. 25.Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. Antineoplastic agents. 443. Synthesis of the cancer cell growth inhibitor hydroxyphenstatin and its sodium diphosphate prodrug. J. Med. Chem. 2000, 43, 2731-2737. 26.Liou, J. P.; Chang, J. Y.; Chang, C. W.; Chang. C. Y.; Mahindroo, N.; Kuo, F. M.; Hsieh, H. P. Synthesis and structure-activity relationships of 3-aminobenzophenones as antimitotic agents. J. Med. Chem. 2004, 47, 2897-2905. 27.Alvarez, R.; Alvarez, C.; Mollinedo, F.; Sierra, B. G.; Medarde, M.; Pelaez, R. Isocombretastatins A: 1,1-diarylethenes as potent inhibitors of tubulin polymerization and cytotoxic compounds. Bioorg. Med. Chem. 2009, 17, 6422-6431. 28.Soussi, MA.; Provot, O1.; Bernadat, G.; Bignon, J.; Wdzieczak-Bakala, J.; Desravines, D.; Dubois, J.; Brion, JD1.; Messaoudi, S.; Alami, M. Discovery of azaisoerianin derivatives as potential antitumors agents. Eur. J. Med. Chem. 2014, 78, 178-189. 29.La Regina, G1.; Bai, R.; Rensen, W. M.; Di Cesare, E.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M. L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J. Med. Chem. 2013, 56, 123−149. 30.Chen, H.; Li, Y.; Sheng, C.; Lv, Z.; Dong, G.; Wang, T.; Liu, J.; Zhang, M.; Li, L.; Zhang, T.; Geng, D.; Niu, C.; Li, K. Design and synthesis of cyclopropylamide analogues of combretastatin-A4 as novel microtubule-stabilizing agents. J. Med. Chem. 2013, 56, 685−699. 31.O''Boyle, N. M.; Carr, M.; Greene, L.M.; Bergin, O.; Nathwani, S. M.; McCabe, T.; Lloyd, D. G.; Zisterer, D. M.; Meegan, M. J. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J. Med. Chem. 2010, 53, 8569–8584. 32.Liu, Z. Y.; Wang, Y. M.; Han, Y. X.; Liu, L.; Jin, J.; Yi, H.; Li, Z. R.; Jiang, J. D.; Boykin, D. W. Synthesis and antitumor activity of novel 3,4-diaryl squaric acid analogs. Eur. J. Med. Chem. 2013, 65, 187-194. 33.Romagnoli, R.; Baraldi, P. G.; Salvador, M. K.; Preti, D.; Aghazadeh, Tabrizi, M.; Brancale, A.; Fu, X. H.; Li, J.; Zhang, S. Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem. 2012, 55, 475−488. 34.Chen, T.; Luo, Y.; Hu, Y.; Yang, B.; Lu, W. Synthesis and biological evaluation of novel 1,6-diaryl pyridin-2(1H)-one analogs. Eur. J. Med. Chem. 2013, 64, 613-620. 35.Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; Lemelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem. 2014, 57, 3369−3381. 36.Combes, S.; Barbier, P.; Douillard, S.; McLeer-Florin, A.; Bourgarel-Rey, V.; Pierson, J. T.; Fedorov, A.Y.; Finet J. P.; Boutonnat. J.; Peyrot, V. Synthesis and biological evaluation of 4-arylcoumarin analogues of combretastatins. Part 2. J. Med. Chem. 2011, 54, 3153–3162. 37.Lai, M. J.; Chang, J. Y.; Lee, H. Y.; Kuo, C. C.; Lin, M. H.; Hsieh, H. P.; Chang, C. Y.; Wu, J. S.; Wu, S. Y.; Shey, K. S.; Liou, J. P. Synthesis and biological evaluation of 1-(4''-Indolyl and 6''-Quinolinyl) indoles as a new class of potent anticancer agents. Eur. J. Med. Chem. 2011, 46, 3623-3629. 38.Lu, Y.; Chen, J.; Wang, J.; Li, C. M.; Ahn, S.; Barrett, C. M.; Dalton, J. T.; Li, W.; Miller, D.D. Design, synthesis, and biological evaluation of stable colchicine binding site tubulin inhibitors as potential anticancer agents. J. Med. Chem. 2014, 57, 7355−7366. 39.Zhao, D. G.; Chen, J.; Du, Y. R.; Ma, Y. Y.; Chen, Y. X.; Gao, K.; Hu, B. R. Synthesis and structure-activity relationships of N-methyl-5,6,7-trimethoxylindoles as novel antimitotic and vascular disrupting agents. J. Med. Chem. 2013, 56, 1467−1477. 40.Hsieh, C. C.; Lee, H. Y.; Nien, C. Y.; Kuo, C.C.; Chang, C. Y.; Chang, J. Y.; Liou, J. P. Synthesis and biological evaluation of 4-aroyl-6,7,8-trimethoxyquinolines as a novel class of anticancer agents. Molecules 2011, 16, 2274-2284. 41.Romagnoli, R.; Baraldi, P. G.; Salvador, M. K.; Preti, D.; Aghazadeh, Tabrizi, M.; Brancale, A.; Fu, X. H.; Li, J.; Zhang, S. Z.; Hamel, E.; Bortolozzi, R.; Porcu, E.; Basso, G.; Viola, G. Discovery and optimization of a series of 2-aryl-4-amino-5-(3'',4'',5''-trimethoxybenzoyl)thiazoles as novel anticancer agents. J. Med. Chem. 2012, 55, 5433–5445. 42.Lee, J.; Kim, S. J.; Choi, H.; Kim, Y. H.; Lim, I. T.; Yang, H. M.; Lee, C. S.; Kang, H. R.; Ahn, S. K.; Moon, S. K.; Kim, D. H.; Lee, S.; Choi, N. S.; Lee, K. J. Identification of CKD-516: a potent tubulin polymerization inhibitor with marked antitumor activity against murine and human solid tumors. J. Med. Chem. 2010, 53, 6337–6354. 43.Liou, J. P.; Chang, Y. L.; Kuo, F. M.; Chang, C. W.; Tseng, H. Y.; Wang, C. C.; Yang, Y. N.; Chang, J. Y.; Lee, S. J.; Hsieh, H. P. Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents. J. Med. Chem. 2004, 47, 4247-4257. 44.Hadimani, M. B.; Macdonough, M. T.; Ghatak, A.; Strecker, T. E.; Lopez, R.; Sriram, M.; Nguyen, B. L.; Hall, J. J.; Kessler, R. J.; Shirali, A. R.; Liu, L.; Garner, C. M.; Pettit, G. R.; Hamel, E.; Chaplin, D. J.; Mason, R. P.; Trawick, M. L.; Pinney, K. G. Synthesis of a 2-aryl-3-aroyl indole salt (OXi8007) resembling combretastatin A-4 with application as a vascular disrupting agent. J. Nat. Prod. 2013, 76, 1668−1678. 45.Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kostewicz, E.; Shackleford, D. M.; Morizzi, J.; Hamel, E.; Jung, M. K.; Kremmidiotis, G. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J. Med. Chem. 2011, 54, 6014–6027. 46.Lee, H. Y.; Chang, J. Y.; Nien, C. Y.; Kuo, C. C.; Shih, K. H.; Wu, C. H.; Chang, C. Y.; Lai, W. Y.; Liou, J. P. 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. Part 2. The impact of bridging groups at position C-2. J. Med. Chem. 2011, 54, 8517−8525. 47.Lee, H. Y.; Chang, J. Y.; Chang, L. Y.; Lai, W. Y.; Lai, M. J.; Shih, K. H.; Kuo, C. C.; Chang, C. Y.; Liou, J. P. Concise syntheses of N-aryl-5,6,7-trimethoxyindoles as antimitotic and vascular disrupting agents: application of the copper-mediated Ullmann-type arylation. Org. Biomol. Chem. 2011, 9, 3154-3157. 48.Chuang, H. Y.; Chang, J. Y.; Lai, M. J.; Kuo, C. C.; Lee, H. Y.; Hsieh, H. P.; Chen, Y. J.; Chen, L. T.; Pan, W. Y.; Liou, J. P. 2-amino-3,4,5-trimethoxybenzophenones as potent tubulin polymerization inhibitors. ChemMedChem 2011, 6, 450-456. 49.Matsumoto, M.; Kobayashi, K.; Hotta,Y. Acid-catalyzed oxidation of benzaldehydes to phenols by hydrogen peroxide. J. Org. Chem. 1984, 49, 4740-4741. 50.Fukuda,Y.; Furuta, H.; Kusama, Y.; Ebisu, H.; Oomori, Y.; Terashima, S. Novel cyclopropapyrroloindole derivative (AT-3510) bearing methoxycarbonyl and trifluoromethyl groups. J. Med. Chem. 1999, 42, 1448-1458. 51.Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Nakamura, H.; Fujikawa, M. Halogenation using quaternary ammonium polyhalides. IV. selective bromination of phenols by use of tetraalkylammonium tribromides. Bull. Chem. Soc. Jpn. 1987, 60, 4187-4189. 52.Qiu, J. Epigenetics: unfinished symphony. Nature 2006, 11, 143-145. 53.Egger, G.; Liang, G.; Aparicio, A.; Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429, 457-463. 54.Copeland, R. A.; Solomon, M. E.; Richon, V. M. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov. 2009, 8, 724-732. 55.Kazantsev, A. G.; Thompson, L. M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov. 2008, 7, 854-868. 56.Yao, Y. L.; Yang, W. M. Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J. Biomed Biotechnol. 2011, 2011, 146493. 57.Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 2006, 6, 38-51. 58.Biel, M.; Wascholowski, V.; Giannis, A. Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes. Angew. Chem. Int. Ed. 2005, 44, 3186-3216. 59.Willyard, C. The saving switch. Nat. Med. 2010, 16, 18-21. 60.Marks, P. A.; Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007, 25, 84-90. 61.Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. Rev. Drug Discov. 2007, 6, 21-22. 62.Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug. Discov. 2002, 1, 287-299. 63.Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769-784. 64.Spiegel, S.; Milstien, S.; Grant, S. Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene 2012, 31, 537-551. 65.Falkenberg, K. J.; Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673-691. 66.Shultz, M.D.; Cao, X.; Chen, C. H.; Cho, Y. S.; Davis, N. R.; Eckman, J.; Fan, J.; Fekete, A.; Firestone, B.; Flynn, J.; Green, J.; Growney, J. D.; Holmqvist, M.; Hsu, M.; Jansson, D.; Jiang, L.; Kwon, P.; Liu, G.; Lombardo, F.; Lu, Q.; Majumdar, D.; Meta, C.; Perez, L.; Pu, M.; Ramsey, T.; Remiszewski, S.; Skolnik, S.; Traebert, M.; Urban, L.; Uttamsingh, V.; Wang, P.; Whitebread, S.; Whitehead, L.; Yan-Neale, Y.; Yao, Y. M.; Zhou, L.; Atadja, P. Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors. J. Med. Chem. 2011, 54, 4752-4772. 67.Gattin, Z.; van Gunsteren, W. F. Influence of backbone fluorine substitution upon the folding equilibrium of a beta-heptapeptide. Helv. Chim. Acta. 2005, 88, 1630-1657. 68.Bots, M.; Johnstone, R. W. Rational combinations using HDAC inhibitors. Clin. Cancer Res. 2009, 15, 3970-3977. 69.Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T.; Suzuki, T.; Tsuruo, T.; Nakanishi, O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. 1999, 96, 4592−4597. 70.Arts, J1.; King, P.; Marien, A.; Floren, W.; Belien, A.; Janssen, L.; Pilatte, I.; Roux, B.; Decrane, L.; Gilissen, R.; Hickson, I.; Vreys, V.; Cox, E.; Bol, K.; Talloen, W.; Goris, I.; Andries, L.; Du Jardin, M.; Janicot, M.; Page, M.; van Emelen, K.; Angibaud, P. JNJ-26481585, a novel "second-generation" oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin. Cancer Res. 2009, 15, 6841-6851. 71.Furlan, A.; Monzani, V.; Reznikov, L. L.; Leoni, F.; Fossati, G.; Modena, D.; Mascagni, P.; Dinarello, C. A. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol. Med. 2011, 17, 353-362. 72.Wang, H.; Yu, N.; Chen, D.; Lee, K. C.; Lye, P. L.; Chang, J. W.; Deng, W.; Ng, M. C.; Lu, T.; Khoo, M L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K. C.; Wang, X.; Fang, L.; Goh, K. L.; Khng, H. H.; Goh, S. K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J. M.; Dymock, B. W.; Kantharaj, E.; Sun, E. T. Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J. Med. Chem. 2011, 54, 4694-4720. 73.Mandl-Weber, S.; Meinel, F. G.; Jankowsky, R.; Oduncu, F.; Schmidmaier, R.; Baumann, P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol. 2010, 149, 518-528. 74.Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.; Bernstein, N.; Bouchain, G.; Vaisburg, A.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel, M.; Yan, P. T.; Trachy-Bourget, M. C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, A. R.; Li, Z.; Besterman, J. M.; Delorme, D. Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide (MGCD0103), an orally active histone deacetylase inhibitor. J. Med. Chem. 2008, 51, 4072-4075. 75.Buggy, J. J.; Cao, Z. A.; Bass, K. E.; Verner, E.; Balasubramanian, S.; Liu, L.; Schultz, B. E.; Young, P. R.; Dalrymple, S. A. CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol. Cancer Ther. 2006, 5, 1309-1317. 76.Santo, L.; Hideshima, T.; Kung, A. L.; Tseng, J. C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J. H.; Mazitschek, R.; Ogier, W. C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K. C.; Jones, S. S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012, 119, 2579-2589. 77.Qian, C.; Lai, C. J.; Bao, R.; Wang, D. G.; Wang, J.; Xu, G. X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; Zifcak, B.; Ma, A. W.; DellaRocca, S.; Borek, M.; Zhai, H. X.; Cai, X.; Voi, M. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res. 2012, 18, 4104-4113. 78.Graham, M. A.; Raw, S. A.; Andrews, D. M.; Good, C. J.; Matusiak, Z. S.; Maybury, M.; Stokes, E. S. E.; Turner, A. T. Flexible and scalable route to HDAC inhibitors containing an unusual trisubstituted pyridine Core. Org. Process Res. Dev. 2012, 16, 1283−1292. 79.Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors:from bench to clinic. J. Med. Chem. 2008, 51, 1505-1529. 80.Marson, C. M.; Matthews, C. J.; Yiannaki, E.; Atkinson, S. J.; Soden, P. E.; Shukla, L.; Lamadema, N.; Thomas, N. S. Discovery of potent, isoform-selective inhibitors of histone deacetylase containing chiral heterocyclic capping groups and a N-(2-aminophenyl)benzamide binding unit. J. Med. Chem. 2013, 56, 6156-6174. 81.Abdel-Magid, A. F. Histone Deacetylase 4 (HDAC4) Inhibitors: A Promising Treatment for Huntington''s Disease. ACS Med. Chem. Lett. 2013, 4, 692-693. 82.Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842-10846. 83.Balasubramanian, S.; Ramos, J.; Luo, W.; Sirisawad, M.; Verner, E.; Buggy, J. J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008, 22, 1026-1034. 84.Tang, G.; Wong, J. C.; Zhang, W.; Wang, Z.; Zhang, N.; Peng, Z.; Zhang, Z.; Rong, Y.; Li, S.; Zhang, M.; Yu, L.; Feng, T.; Zhang, X.; Wu, X.; Wu, J. Z.; Chen, L. Identification of a novel aminotetralin class of HDAC6 and HDAC8 selective inhibitors. J. Med. Chem. 2014, 57, 8026−8034. 85.Cai, X1.; Zhai, H. X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C. J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin- 6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem. 2010, 53, 2000–2009. 86.Ko, K. S.; Steffey, M. E.; Brandvold, K. R.; Soellner, M. B. Development of a chimeric c-Src kinase and HDAC inhibitor. ACS Med. Chem. Lett. 2013, 4, 779−783. 87.Mahboobi, S.; Dove, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Novel chimeric histone deacetylase inhibitors: a series of lapatinib hybrides as potent inhibitors of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and histone deacetylase activity. J. Med. Chem. 2010, 53, 8546-8555. 88.Mahboobi, S.; Dove, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rβ, and histone deacetylases. J. Med. Chem. 2009, 52, 2265-2279. 89.Guerrant, W.; Patil, V.; Canzoneri, J. C.; Oyelere, A. K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem. 2012, 55, 1465−1477. 90.Gryder, B. E.; Rood, M.K.; Johnson, K. A.; Patil, V.; Raftery, E. D.; Yao, L. P.; Rice, M.; Azizi, B.; Doyle, D. F.; Oyelere, A. K. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem. 2013, 56, 5782−5796. 91.Chen, J. B.; Chern, T. R.; Wei, T. T.; Chen, C. C.; Lin, J. H.; Fang, J. M. Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment. J. Med. Chem. 2013, 56, 3645−3655. 92.Baud, M. G.; Leiser, T.; Haus, P.; Samlal, S.; Wong, A. C.; Wood, R. J.; Petrucci, V.; Gunaratnam, M.; Hughes, S. M.; Buluwela, L.; Turlais, F.; Neidle, S.; Meyer-Almes, F. J.; White, A. J.; Fuchter, M. J. Defining the mechanism of action and enzymatic selectivity of psammaplin A against its epigenetic targets. J. Med. Chem. 2012, 55, 1731−1750. 93.Lai, M. J.; Huang, H. L.; Pan, S. L.; Liu, Y. M.; Peng, C. Y.; Lee, H. Y.; Yeh, T. K.; Huang, P. H.; Teng, C. M.; Chen, C. S.; Chuang, H. Y.; Liou, J. P. Synthesis and biological evaluation of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as potent histone deacetylase inhibitors with antitumor activity in vivo. J. Med. Chem. 2012, 55, 3777−3791. 94.Mahboobi, S.; Sellmer, A.; Hocher, H.; Garhammer, C.; Pongratz, H.; Maier, T.; Ciossek, T.; Beckers, T. 2-aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors. J. Med. Chem. 2007, 50, 4405-4418. 95.Littke, A. F.; Fu, G. C. A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. J. Am. Chem. Soc. 2001, 123, 6989-7000. 96.Li, Y.; Shin, D.; Kwon, S. H. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 2013, 280, 775-793. 97.Dallavalle, S.; Pisano, C.; Zunino, F. Development and therapeutic impact of HDAC6-selective inhibitors. Bio. Pharm. 2012, 84, 756-765. 98.Valenzuela-Fernandez, A.; Cabrero, J. R.; Serrador, J. M.; Sanchez-Madrid, F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008, 18, 291-297. 99.Kalin, J. H.; Bergman, J. A. Development and therapeutic implications of selective histone deacetylase 6 inhibitors J. Med. Chem. 2013, 56, 6297−6313. 100.Valente, S.; Mai, A. Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases a patent review (2011-2013). Expert Opin. Ther. Pat. 2014, 24, 401-415. 101.Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad Sci. U. S. A. 2003, 100, 4389-4394. 102.Bergman, J. A.; Woan, K.; Perez-Villarroel, P.; Villagra, A.; Sotomayor, E. M.; Kozikowski, A. P. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J. Med. Chem. 2012, 55, 9891-9899. 103.HDAC inhibitors and therapeutic methods using the same. WO2012106343A2. 104.Selective inhibitors of histone deacetylase isoform 6 and methods thereof . WO2012178208A2. 105.Wagner, F. F.; Olson, D. E.; Gale, J. P.; Kaya, T.; Weiwer, M.; Aidoud, N.; Thomas, M.; Davoine, E. L.; Lemercier, B. C.; Zhang, Y. L.; Holson, E. B. Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif. J. Med. Chem. 2013, 56, 1772−1776. 106.Yu, C. W.; Chang, P. T.; Hsin, L. W.; Chern, J. W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer''s disease. J. Med. Chem. 2013, 56, 6775−6791. 107.Blackburn, C.; Barrett, C.; Chin, J.; Garcia, K.; Gigstad, K.; Gould, A.; Gutierrez, J.; Harrison, S.; Hoar, K.; Lynch, C.; Rowland, R. S.; Tsu, C.; Ringeling, J.; Xu, H. Potent histone deacetylase inhibitors derived from 4-(aminomethyl)-N-hydroxybenzamide with high selectivity for the HDAC6 isoform. J. Med. Chem. 2013, 56, 7201−7211. 108.Jochems, J.; Boulden, J.; Lee, B. G.; Blendy, J. A.; Jarpe, M.; Mazitschek, R.; Van Duzer, J. H.; Jones, S.; Berton, O. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 2014, 39, 389-400. 109.Lee, J. H.; Mahendran, A.; Yao, Y.; Ngo, L.; Venta-Perez, G.; Choy, M. L.; Kim, N.; Ham, W. S.; Breslow, R.; Marks, P. A. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15704-15709. 110.Lee, H. Y.; Tsai, A. C.; Chen, M. C.; Shen, P. J.; Cheng, Y. C.; Kuo, C. C.; Pan, S. L.; Liu, Y. M.; Liu, J. F.; Yeh. T. K.; Wang, J. C.; Chang, C. Y.; Chang, J. Y.; Liou, J. P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem. 2014, 57, 4009−4022. 111.Margolis, B. J.; Long, K. A.; Laird, D. L.; Ruble, J. C.; Pulley, S. R. Assembly of 4-aminoquinolines via palladium catalysis: a mild and convenient alternative to SNAr methodology. J. Org. Chem. 2007, 72, 2232-2235.
|