(3.237.178.91) 您好!臺灣時間:2021/03/02 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃子娟
研究生(外文):Tzu-Chuan Huang
論文名稱:甲基乙二醛抑制劑對於馬兜鈴酸腎損傷小鼠腎臟保護效果之研究
論文名稱(外文):The nephro-protective effects of methylglyoxal inhibitors against aristolochic acid-induced nephrotoxicity in mice
指導教授:李仁愛
口試委員:蔡東湖方嘉佑李宗徽許光陽許秀蘊王靜瓊張偉嶠
口試日期:2015-01-16
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:104
中文關鍵詞:馬兜鈴酸甲基乙二醛糖化終產物二甲雙胍幾丁聚醣
外文關鍵詞:aristolochic acidmethylglyoxalsemicarbazide-sensitive amine oxidaseadvanced glycation end-productsmetforminchitosan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
馬兜鈴酸(aristolochic acid, AA)具嚴重腎毒性與致癌性,且致病案例至今仍在各國持續發生。AA腎毒性與腎臟甲基乙二醛(methylglyoxal, MGO)累積有關。Semicarbazide-sensitive amine oxidase (EC 1.4.3.21, SSAO)是MGO生合成的重要酵素之一,本論文將研究AA腎病變小鼠腎臟SSAO活性的變化,同時研究MGO抑制劑─二甲雙胍(metformin)對於AA腎病變的影響。口服幾丁聚醣(~29kDa, 84% deactylation)能減弱AA腎毒性,但其機制尚未明確,本論文亦將研究此幾丁聚醣在腎臟中的生理活性。小鼠以口服投與metformin(12或24 mg/kg BW/day)共15天,並在第8-15天腹腔注射AA(5 mg/kg BW/day)。從腎功能生化指標與組織損傷評估可知,metformin減弱AA腎毒性,尤其以12 mg/kg劑量的效果較佳。AA誘導組腎臟MGO約為控制組的6.3倍(37.33 ± 9.78 vs. 5.89 ± 2.64μg/mg of protein, p< 0.01),給予12 mg/kg之metformin,腎臟MGO降至9.81 ± 5.04μg/mg of protein (p < 0.05)。AA誘導組腎臟SSAO活性約為控制組的2.7倍(1.21 ± 0.64 vs. 0.46 ± 0.10pmol/LH2O2/min/μg, p< 0.05),而metformin並不影響腎臟SSAO活性。Metformin亦能夠清除腎臟Nε-(carboxyethyl) lysine─MGO的下游糖化終產物。另批小鼠經注射AA(10 mg/kg BW/day)共5天後,餵食幾丁聚醣(250、500、或1500 mg/kg BW/day)共14天。腎功能生化值顯示500 mg/kg幾丁聚醣具最佳療效,且與AA誘導組相較,顯著降低腎臟MGO含量(9.46±1.40vs. 37.51±7.05μg/mg protein, p< 0.01)。幾丁聚醣亦降低AA誘導組的腎臟脂質過氧化,並抑制正常組腎臟angiotensin-converting enzyme(ACE)活性。AA誘導組腎臟ACE活性因AA而降低,幾丁聚醣在此組別中對於ACE的影響無法顯見。本研究首次證實AA誘導腎臟SSAO上升、且MGO抑制劑─metformin─能減弱AA腎毒性,具潛力成為新穎的AA腎病變治療法。口服幾丁聚醣亦呈現良好的腎臟MGO清除與脂質過氧化抑制效果,未來可望發展為有益於腎臟疾病的輔助食品。
Aristolochic acid (AA) has severe nephrotoxicity and carcinogenicity, and cases of exposure to AA are still observed worldwide. AA nephrotoxicity is related to the accumulation of methylglyoxal (MGO) in the kidney. Semicarbazide-sensitive amine oxidase (EC 1.4.3.21, SSAO) is one of the important enzymes involved in MGO biosynthesis. In the present work, the change of renal SSAO activity in AA induced nephropathic mice was studied. In addition, the effects of MGO inhibitor, metformin, in AA-induced nephropathy were studied. Further, oral administration of chitosan (molecular mass of ~29kDa, 84%deactylation) can reduce AA-induced nephrotoxicity, but its mechanism is still unclear; hence, the physiological activity of chitosan in mouse kidney was also studied. Mice were treated with metformin (12 or 24 mg/kg BW/day) orally for 15 days, and AA (5 mg/kg BW/day) was administered intraperitoneally from day 8 to day 15. Based on biochemical parameters of renal function and tissue damage assessment, metformin was found to reduce AA-induced nephrotoxicity, particularly at the dose of 12 mg/kg. In AA-treated mice, renal MGO level was about 6.3 times of that in control mice (37.33 ± 9.78 vs. 5.89 ± 2.64μg/mg protein, p< 0.01). After treatment with 12 mg/kgmetformin, renal MGO level decreased to 9.81 ± 5.04μg/mg protein (p< 0.05). The renal SSAO activity in AA-treated mice was about 2.7 times of that in control mice (1.21 ± 0.64 vs. 0.46 ± 0.10pmol/LH2O2/min/μg, p< 0.05), but metformin had no effect on renal SSAO activity. Metformin was able to remove Nε-(carboxyethyl) lysine─an MGO downstream advanced glycation end-product in kidney. The other groups of mice were injected with AA (10 mg/kg BW/day) for a total of 5 days, then administered chitosan (250, 500, or 1500 mg/kg BW/day) for another 14 days. The biochemical analysis of renal function indicated that chitosan at 500 mg/kg provided the best efficacy and significantly reduced renal MGO levels compared with AA-treated mice (9.46±1.40vs. 37.51±7.05μg/mg protein, p< 0.01). In addition, chitosan also reduced renal lipid peroxidation in AA-treated mice and inhibited the activity of angiotensin-converting enzyme (ACE) in the kidney of control mice. Since ACE activity in AA-treated mice was reduced by AA, the effect of chitosan on ACE activity was not evident. This is the first study to show that AA increases the activity of renal SSAO, and MGO inhibitor can reduce its nephrotoxicity; thus, indicating SSAO or MGO inhibition as potentially new therapeutic targets for AA-related nephropathy. Further, effective inhibition of renal MGO by orally administered chitosan suggests that it has potential to be developed into dietary supplement to benefit renal pathologies.
目次…Ⅰ
圖次…Ⅲ
表次…Ⅴ
縮寫表…Ⅵ
中文摘要…Ⅶ
Abstract…Ⅷ
第一章 緒論…1
第二章 文獻回顧…4
第一節 馬兜鈴酸(Aristolochic acids)…4
壹、馬兜鈴酸的來源與特性…4
貳、馬兜鈴酸腎毒性的發現與臨床表徵…6
參、馬兜鈴酸腎毒性的機轉…7
肆、臨床上對於馬兜鈴酸腎症的治療…8
第二節 甲基乙二醛(Methylglyoxal)…10
壹、甲基乙二醛的特性與發現…10
貳、甲基乙二醛的來源…10
參、甲基乙二醛的代謝…13
肆、甲基乙二醛的病理特性…14
第三節 Semicarbazide-sensitive amine oxidase…18
壹、Semicarbazide-sensitive amine oxidase的特性…18
貳、Semicarbazide-sensitive amine oxidase與疾病的關係…18
第四節 二甲雙胍(Metformin)…20
壹、Metformin的基本特性…20
貳、Metformin降低methylglyoxal的相關研究…20
第五節幾丁聚醣(Chitosan)…22
壹、幾丁聚醣的基本特性…22
貳、幾丁聚醣的生理活性…23
第三章 研究目的…24
第四章 研究方法…25
第一節 實驗材料…25
壹、試劑…27
貳、耗材…27
參、儀器…29
第二節 實驗方法…29
壹、動物實驗─投與方式、組織樣品處理…29
貳、腎功能生化值之分析…34
參、腎切片Periodic Acid-Schiff染色與腎小管間質組織損傷評分36
肆、腎臟semicarbazide-sensitive amine oxidase活性測定…36
伍、腎臟methylglyoxal免疫染色與定量…38
陸、腎臟Nε-(carboxyethyl) lysine免疫染色與定量…40
柒、腎臟Nε-(carboxymethyl) lysine免疫染色與定量…42
捌、Angiotensin converting enzyme活性測定…43
玖、Thiobarbituric acid reactive substances分析…44
拾、統計方法…44
第五章 研究結果與討論…45
第一節 Metformin於馬兜鈴酸腎病變小鼠的影響…45
壹、腎功能指標結果…45
貳、腎組織Periodic Acid-Schiff染色結果與損傷評估…48
参、腎臟semicarbazide-sensitive amine oxidase活性分析結果50
肆、腎臟甲基乙二醛免疫染色與含量…51
伍、腎臟Nε-(carboxyethyl) lysine染色與定量結果…54
陸、腎臟Nε-(carboxymethyl) lysine染色與定量結果…55
柒、討論…58
第二節 幾丁聚醣於馬兜鈴酸腎病變小鼠的腎臟保護作用…64
壹、腎功能生化數值…64
貳、腎臟semicarbazide-sensitive amine oxidase活性…66
參、腎臟甲基乙二醛含量…66
肆、腎臟angiotensin-converting enzyme活性…68
伍、腎臟thiobarbituric acid reactive substances分析…68
陸、幾丁聚醣的體外特性…69
柒、討論…73
第六章 結論…76
參考文獻…77
個人著作…89
Ahmed, M. U., E. Brinkmann Frye, T. P. Degenhardt, S. R. Thorpe & J. W. Baynes (1997) N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J, 324 ( Pt 2), 565-70.

Ahmed, M. U., S. R. Thorpe & J. W. Baynes (1986) Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem, 261, 4889-94.

Atkins, T. W. & P. J. Thornally (1989) Erythrocyte glyoxalase activity in genetically obese (ob/ob) and streptozotocin diabetic mice. Diabetes Res, 11, 125-9.

Bakhiya, N., V. M. Arlt, A. Bahn, G. Burckhardt, D. H. Phillips & H. Glatt (2009) Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology, 264, 74-9.

Baudoux, T. E., A. A. Pozdzik, V. M. Arlt, E. G. De Prez, M. H. Antoine, N. Quellard, J. M. Goujon & J. L. Nortier (2012) Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney Int, 82, 1105-13.

Baynes, J. W. & S. R. Thorpe (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 48, 1-9.

Beisswenger, P. & D. Ruggiero-Lopez (2003) Metformin inhibition of glycation processes. Diabetes Metab, 29, 6S95-103.

Beisswenger, P. J., S. K. Howell, R. M. O''Dell, M. E. Wood, A. D. Touchette & B. S. Szwergold (2001) alpha-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care, 24, 726-32.

Beisswenger, P. J., S. K. Howell, A. D. Touchette, S. Lal & B. S. Szwergold (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes, 48, 198-202.

Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54.

Brownlee, M. (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615-25.

Bucala, R., Z. Makita, T. Koschinsky, A. Cerami & H. Vlassara (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci U S A, 90, 6434-8.

Case, E. M. & R. P. Cook (1931) The occurrence of pyruvic acid and methylglyoxal in muscle metabolism. Biochem J, 25, 1319-35.

Chang, Y. M., C. T. Chang, T. C. Huang, S. M. Chen, J. A. Lee & Y. C. Chung (2011) Effects of low molecular weight chitosans on aristolochic acid-induced renal lesions in mice. Food Chemistry, 129, 1751-1758.

Chen, J. L. & Y. Zhao (2012) Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of beta-chitosan based films. J Food Sci, 77, E127-36.

Cho, Y. W., Y. N. Cho, S. H. Chung, G. Yoo & S. W. Ko (1999) Water-soluble chitin as a wound healing accelerator. Biomaterials, 20, 2139-45.

Clift, F. P. & R. P. Cook (1932) A method of determination of some biologically important aldehydes and ketones, with special reference to pyruvic acid and methylglyoxal. Biochem J, 26, 1788-99.

Cosyns, J. P. (2003) Aristolochic acid and ''Chinese herbs nephropathy'': a review of the evidence to date. Drug Saf, 26, 33-48.

Cosyns, J. P., M. Jadoul, J. P. Squifflet, J. F. De Plaen, D. Ferluga & C. van Ypersele de Strihou (1994) Chinese herbs nephropathy: a clue to Balkan endemic nephropathy? Kidney Int, 45, 1680-8.

Czech, M. P., J. C. Lawrence, Jr. & W. S. Lynn (1974) Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport. J Biol Chem, 249, 5421-7.

Debelle, F. D., J. L. Nortier, E. G. De Prez, C. H. Garbar, A. R. Vienne, I. J. Salmon, M. M. Deschodt-Lanckman & J. L. Vanherweghem (2002) Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. J Am Soc Nephrol, 13, 431-6.

Debelle, F. D., J. L. Nortier, C. P. Husson, E. G. De Prez, A. R. Vienne, K. Rombaut, I. J. Salmon, M. M. Deschodt-Lanckman & J. L. Vanherweghem (2004) The renin-angiotensin system blockade does not prevent renal interstitial fibrosis induced by aristolochic acids. Kidney Int, 66, 1815-25.

Degenhardt, T. P., S. R. Thorpe & J. W. Baynes (1998) Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand), 44, 1139-45.

Del Rio, D., A. J. Stewart & N. Pellegrini (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis, 15, 316-28.

Dhar, I., A. Dhar, L. Wu & K. M. Desai (2014) Methylglyoxal, a reactive glucose metabolite, increases renin angiotensin aldosterone and blood pressure in male Sprague-Dawley rats. Am J Hypertens, 27, 308-16.

Docherty, N. G., O. E. O''Sullivan, D. A. Healy, J. M. Fitzpatrick & R. W. Watson (2006) Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol, 290, F4-13.

Dong, L., Q. Zhou, Z. Zhang, Y. Zhu, T. Duan & Y. Feng (2012) Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J Obstet Gynaecol Res, 38, 1077-85.

Dufes, C., J. M. Muller, W. Couet, J. C. Olivier, I. F. Uchegbu & A. G. Schatzlein (2004) Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles. Pharm Res, 21, 101-7.

Duong, J. K., D. M. Roberts, T. J. Furlong, S. S. Kumar, J. R. Greenfield, C. M. Kirkpatrick, G. G. Graham, K. M. Williams & R. O. Day (2012) Metformin therapy in patients with chronic kidney disease. Diabetes Obes Metab, 14, 963-5.

Enrique-Tarancon, G., L. Marti, N. Morin, J. M. Lizcano, M. Unzeta, L. Sevilla, M. Camps, M. Palacin, X. Testar, C. Carpene & A. Zorzano (1998) Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem, 273, 8025-32.

Es Haghi, M., G. Dehghan, N. Banihabib, S. Zare, P. Mikaili & F. Panahi (2014) Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats. Indian J Nephrol, 24, 291-6.

Espinosa-Mansilla, A., I. Duran-Meras, F. C. Canada & M. P. Marquez (2007) High-performance liquid chromatographic determination of glyoxal and methylglyoxal in urine by prederivatization to lumazinic rings using in serial fast scan fluorimetric and diode array detectors. Anal Biochem, 371, 82-91.

Freedman, B. I., J. P. Wuerth, K. Cartwright, R. P. Bain, S. Dippe, K. Hershon, A. D. Mooradian & B. S. Spinowitz (1999) Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials, 20, 493-510.

Frischmann, M., C. Bidmon, J. Angerer & M. Pischetsrieder (2005) Identification of DNA adducts of methylglyoxal. Chem Res Toxicol, 18, 1586-92.

Frye, E. B., T. P. Degenhardt, S. R. Thorpe & J. W. Baynes (1998) Role of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins. J Biol Chem, 273, 18714-9.

Gao, W., X. Li, Z. Gao & H. Li (2014) Iron increases diabetes-induced kidney injury and oxidative stress in rats. Biol Trace Elem Res, 160, 368-75.

Giardino, I., D. Edelstein & M. Brownlee (1994) Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest, 94, 110-7.

Gokmen, M. R., J. P. Cosyns, V. M. Arlt, M. Stiborova, D. H. Phillips, H. H. Schmeiser, M. S. Simmonds, H. T. Cook, J. L. Vanherweghem, J. L. Nortier & G. M. Lord (2013) The epidemiology, diagnosis, and management of aristolochic acid nephropathy: a narrative review. Ann Intern Med, 158, 469-77.

Guminska, M., J. Ignacak & E. Wojcik (1996) In vitro inhibitory effect of chitosan and its degradation products on energy metabolism in Ehrlich ascites tumour cells (EAT). Pol J Pharmacol, 48, 495-501.

Handler, J. (2012) Hydralazine-induced lupus erythematosis. J Clin Hypertens (Greenwich), 14, 133-6.

Hirakawa, K., K. Midorikawa, S. Oikawa & S. Kawanishi (2003) Carcinogenic semicarbazide induces sequence-specific DNA damage through the generation of reactive oxygen species and the derived organic radicals. Mutat Res, 536, 91-101.

Holmquist, B., P. Bunning & J. F. Riordan (1979) A continuous spectrophotometric assay for angiotensin converting enzyme. Anal Biochem, 95, 540-8.

Hsu, D. Z., C. H. Wan, H. F. Hsu, Y. M. Lin & M. Y. Liu (2008) The prophylactic protective effect of sesamol against ferric-nitrilotriacetate-induced acute renal injury in mice. Food Chem Toxicol, 46, 2736-41.

Huang, T. C., S. M. Chen, Y. C. Li & J. A. Lee (2013) Urinary d-lactate levels reflect renal function in aristolochic acid-induced nephropathy in mice. Biomed Chromatogr, 27, 1100-6.

Huang, T. C., S. M. Chen, Y. C. Li & J. A. Lee (2014) Increased renal semicarbazide-sensitive amine oxidase activity and methylglyoxal levels in aristolochic acid-induced nephrotoxicity. Life Sci, 114, 4-11

Imamura, A., H. S. Mackenzie, E. R. Lacy, F. N. Hutchison, W. R. Fitzgibbon & D. W. Ploth (1995) Effects of chronic treatment with angiotensin converting enzyme inhibitor or an angiotensin receptor antagonist in two-kidney, one-clip hypertensive rats. Kidney Int, 47, 1394-402.

Inoue, Y. & A. Kimura (1995) Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol, 37, 177-227.

Iqbal, M., W. Lin, I. Jabbal-Gill, S. S. Davis, M. W. Steward & L. Illum (2003) Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine, 21, 1478-85.

Kadkhodaee, M., A. Najafi & B. Seifi (2014) Classical and remote post-conditioning effects on ischemia/reperfusion-induced acute oxidant kidney injury. Int J Surg.

Kalapos, M. P. (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett, 110, 145-75.


Kaltwasser, H. & H. G. Schlegel (1966) NADH-Dependent coupled enzyme assay for urease and other ammonia-producing systems. Anal Biochem, 16, 132-8.

Kang, J. H. (2003) Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol Lett, 145, 181-7.

Kender, Z., T. Fleming, S. Kopf, P. Torzsa, V. Grolmusz, S. Herzig, E. Schleicher, K. Racz, P. Reismann & P. P. Nawroth (2014) Effect of metformin on methylglyoxal metabolism in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes, 122, 316-9.

Kierszenbaum, A. L., E. Rivkin & L. L. Tres (2007) Molecular biology of sperm head shaping. Soc Reprod Fertil Suppl, 65, 33-43.

Kiho, T., M. Kato, S. Usui & K. Hirano (2005) Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin Chim Acta, 358, 139-45.

Kohzuki, M., M. Yasujima, M. Kanazawa, K. Yoshida, L. P. Fu, K. Obara, T. Saito & K. Abe (1995) Antihypertensive and renal-protective effects of losartan in streptozotocin diabetic rats. J Hypertens, 13, 97-103.

Krell, D. & J. Stebbing (2013) Aristolochia: the malignant truth. Lancet Oncol, 14, 25-6.

Krumbiegel, G., J. Hallensleben, W. H. Mennicke, N. Rittmann & H. J. Roth (1987) Studies on the metabolism of aristolochic acids I and II. Xenobiotica, 17, 981-91.

Kushiro, M., K. Shikata, H. Sugimoto, K. Ikeda, S. Horiuchi & H. Makino (1998) Accumulation of Nsigma-(carboxy-methyl)lysine and changes in glomerular extracellular matrix components in Otsuka Long-Evans Tokushima fatty rat: a model of spontaneous NIDDM. Nephron, 79, 458-68.

Laing, C., S. Hamour, M. Sheaff, R. Miller & R. Woolfson (2006) Chinese herbal uropathy and nephropathy. Lancet, 368, 338.

Leaback, D. H. & P. G. Walker (1961) Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. Biochem J, 78, 151-6.

Lee, J. A., Y. C. Tsai, H. Y. Chen, C. C. Wang, S. M. Chen, T. Fukushima & K. Imai (2005) Fluorimetric determination of D-lactate in urine of normal and diabetic rats by column-switching high-performance liquid chromatography. Analytica Chimica Acta, 534, 185-191.

Lee, S., T. Lee, B. Lee, H. Choi, M. Yang, C. G. Ihm & M. Kim (2004) Fanconi''s syndrome and subsequent progressive renal failure caused by a Chinese herb containing aristolochic acid. Nephrology (Carlton), 9, 126-9.

Lewinsohn, R. (1984) Mammalian monoamine-oxidizing enzymes, with special reference to benzylamine oxidase in human tissues. Braz J Med Biol Res, 17, 223-56.

Li, H. Y., J. N. Wei, M. S. Lin, D. J. Smith, J. Vainio, C. H. Lin, F. T. Chiang, S. R. Shih, C. H. Huang, M. Y. Wu, Y. C. Hsein & L. M. Chuang (2009) Serum vascular adhesion protein-1 is increased in acute and chronic hyperglycemia. Clin Chim Acta, 404,149-53.

Li, Y. C., Y. M. Shih & J. A. Lee (2013) Gentamicin caused renal injury deeply related to methylglyoxal and N(varepsilon)-(carboxyethyl)lysine (CEL). Toxicol Lett, 219, 85-92.

Li, Y. C., S. H. Tsai, S. M. Chen, Y. M. Chang, T. C. Huang, Y. P. Huang, C. T. Chang & J. A. Lee (2012) Aristolochic acid-induced accumulation of methylglyoxal and Nepsilon-(carboxymethyl)lysine: an important and novel pathway in the pathogenic mechanism for aristolochic acid nephropathy. Biochem Biophys Res Commun, 423, 832-7.

Lord, G. M., M. Hollstein, V. M. Arlt, C. Roufosse, C. D. Pusey, T. Cook & H. H. Schmeiser (2004) DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. Am J Kidney Dis, 43, e11-7.

Lord, G. M., R. Tagore, T. Cook, P. Gower & C. D. Pusey (1999) Nephropathy caused by Chinese herbs in the UK. Lancet, 354, 481-2.

Lyles, G. A. (1996) Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol, 28, 259-74.

Lyles, G. A. & B. A. Callingham (1982) Hydralazine is an irreversible inhibitor of the semicarbazide-sensitive, clorgyline-resistant amine oxidase in rat aorta homogenates. J Pharm Pharmacol, 34, 139-40.

Lyles, G. A. & J. Chalmers (1992) The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem Pharmacol, 43, 1409-14.

Lyles, G. A. & S. A. McDougall (1989) The enhanced daily excretion of urinary methylamine in rats treated with semicarbazide or hydralazine may be related to the inhibition of semicarbazide-sensitive amine oxidase activities. J Pharm Pharmacol, 41, 97-100.

Lyles, G. A. & I. Singh (1985) Vascular smooth muscle cells: a major source of the semicarbazide-sensitive amine oxidase of the rat aorta. J Pharm Pharmacol, 37, 637-43.

Ma, G. N., F. L. Yu, S. Wang, Z. P. Li, X. Y. Xie & X. G. Mei (2014) A Novel Oral Preparation of Hydroxysafflor Yellow A Base on a Chitosan Complex: A Strategy to Enhance the Oral Bioavailability. AAPS PharmSciTech.

Mao, S., W. Sun & T. Kissel (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev, 62, 12-27.

Marchand, S., G. de Revel & A. Bertrand (2000) Approaches to wine aroma: release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J Agric Food Chem, 48, 4890-5.

Marsilio, R., R. Dall''Amico, G. Giordano, L. Murer, G. Montini, M. Ros, L. Bacelle, M. Plebani, N. Dussini & G. Zacchello (1999) Rapid determination of creatinine in serum and urine by ion-pair high-performance liquid chromatography. Int J Clin Lab Res, 29, 103-9.

Martelius, T., M. Salmi, L. Krogerus, R. Loginov, M. Schoultz, M. Karikoski, M. Miiluniemi, A. Soots, K. Hockerstedt, S. Jalkanen & I. Lautenschlager (2008) Inhibition of semicarbazide-sensitive amine oxidases decreases lymphocyte infiltration in the early phases of rat liver allograft rejection. Int J Immunopathol Pharmacol, 21, 911-20.

McLellan, A. C. & P. J. Thornalley (1989) Glyoxalase activity in human red blood cells fractioned by age. Mech Ageing Dev, 48, 63-71.

McLellan, A. C., P. J. Thornalley, J. Benn & P. H. Sonksen (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond), 87, 21-9.

Mehes, J., L. Decsi, F. Varga & S. Kovacs (1958) [Selective chemical disconnection of the uriniferous tubes of the first order in rabbits]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol, 234, 548-65.

Mengs, U. (1987) Acute toxicity of aristolochic acid in rodents. Arch Toxicol, 59, 328-31.

Meyer, M. M., T. P. Chen & W. M. Bennett (2000) Chinese herb nephropathy. Proc (Bayl Univ Med Cent), 13, 334-7.

Miyata, S. & V. Monnier (1992) Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J Clin Invest, 89, 1102-12.

Moore, K. & L. J. Roberts, 2nd (1998) Measurement of lipid peroxidation. Free Radic Res, 28, 659-71.

Murata-Kamiya, N. & H. Kamiya (2001) Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic Acids Res, 29, 3433-8.

Nakayama, K., M. Nakayama, M. Iwabuchi, H. Terawaki, T. Sato, M. Kohno & S. Ito (2008) Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am J Nephrol, 28, 871-8.

Nemet, I., L. Varga-Defterdarovic & Z. Turk (2006) Methylglyoxal in food and living organisms. Mol Nutr Food Res, 50, 1105-17.

Nishimura, K., S. Nishimura, N. Nishi, I. Saiki, S. Tokura & I. Azuma (1984) Immunological activity of chitin and its derivatives. Vaccine, 2, 93-9.

O''Rourke, A. M., E. Y. Wang, A. Miller, E. M. Podar, K. Scheyhing, L. Huang, C. Kessler, H. Gao, H. T. Ton-Nu, M. T. Macdonald, D. S. Jones & M. D. Linnik (2008) Anti-inflammatory effects of LJP 1586 [Z-3-fluoro-2-(4-methoxybenzyl)allylamine hydrochloride], an amine-based inhibitor of semicarbazide-sensitive amine oxidase activity. J Pharmacol Exp Ther, 324, 867-75.

O''Sullivan, J., M. Unzeta, J. Healy, M. I. O''Sullivan, G. Davey & K. F. Tipton (2004) Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicology, 25, 303-15.

Odani, H., T. Shinzato, Y. Matsumoto, J. Usami & K. Maeda (1999) Increase in three alpha,beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem Biophys Res Commun, 256, 89-93.

Ozcelik, E., S. Uslu, D. Burukoglu & A. Musmul (2014) Chitosan and blueberry treatment induces arginase activity and inhibits nitric oxide production during acetaminophen-induced hepatotoxicity. Pharmacogn Mag, 10, S217-24.

Park, J. K., M. J. Chung, H. N. Choi & Y. I. Park (2011) Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci, 12, 266-77.

Park, P. J., J. Y. Je & S. K. Kim (2003) Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides prepared from partially different deacetylated chitosans. J Agric Food Chem, 51, 4930-4.

Pena, J. M., M. Borras, J. Ramos & J. Montoliu (1996) Rapidly progressive interstitial renal fibrosis due to a chronic intake of a herb (Aristolochia pistolochia) infusion. Nephrol Dial Transplant, 11, 1359-60.

Pozdzik, A. A., I. J. Salmon, F. D. Debelle, C. Decaestecker, C. Van den Branden, D. Verbeelen, M. M. Deschodt-Lanckman, J. L. Vanherweghem & J. L. Nortier (2008a) Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int, 73, 595-607.

Pozdzik, A. A., I. J. Salmon, C. P. Husson, C. Decaestecker, E. Rogier, M. F. Bourgeade, M. M. Deschodt-Lanckman, J. L. Vanherweghem & J. L. Nortier (2008b) Patterns of interstitial inflammation during the evolution of renal injury in experimental aristolochic acid nephropathy. Nephrol Dial Transplant, 23, 2480-91.

Ray, S. & M. Ray (1981) Isolation of methylglyoxal synthase from goat liver. J Biol Chem, 256, 6230-3.

Reagan-Shaw, S., M. Nihal & N. Ahmad (2008) Dose translation from animal to human studies revisited. FASEB J, 22, 659-61.

Rice, E. K., G. H. Tesch, Z. Cao, M. E. Cooper, C. N. Metz, R. Bucala, R. C. Atkins & D. J. Nikolic-Paterson (2003) Induction of MIF synthesis and secretion by tubular epithelial cells: a novel action of angiotensin II. Kidney Int, 63, 1265-75.

Romanov, V., T. Whyard, R. Bonala, F. Johnson & A. Grollman (2011) Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells. Apoptosis, 16, 1217-28.

Ruggiero-Lopez, D., M. Lecomte, G. Moinet, G. Patereau, M. Lagarde & N. Wiernsperger (1999) Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol, 58, 1765-73.

Sanae, M. & A. Yasuo (2013) Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats. J Agric Food Chem, 61, 5520-5.

Sanchez-Lopez, E., S. Rayego, R. Rodrigues-Diez, J. S. Rodriguez, R. Rodrigues-Diez, J. Rodriguez-Vita, G. Carvajal, L. S. Aroeira, R. Selgas, S. A. Mezzano, A. Ortiz, J. Egido & M. Ruiz-Ortega (2009) CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB. J Am Soc Nephrol, 20, 1513-26.

Sartori, A., C. M. Mano, M. C. Mantovani, F. H. Dyszy, J. Massari, R. Tokikawa, O. R. Nascimento, I. L. Nantes & E. J. Bechara (2013) Ferricytochrome (c) directly oxidizes aminoacetone to methylglyoxal, a catabolite accumulated in carbonyl stress. PLoS One, 8, e57790.

Sato, N., D. Takahashi, S. M. Chen, R. Tsuchiya, T. Mukoyama, S. Yamagata, M. Ogawa, M. Yoshida, S. Kondo, N. Satoh & S. Ueda (2004) Acute nephrotoxicity of aristolochic acids in mice. J Pharm Pharmacol, 56, 221-9.

Scheen, A. J. (2013) [How I treat ... with metformin a diabetic patient with moderate renal insufficiency]. Rev Med Liege, 68, 190-5.

Schmeiser, H. H., B. L. Pool & M. Wiessler (1986) Identification and mutagenicity of metabolites of aristolochic acid formed by rat liver. Carcinogenesis, 7, 59-63.

Schmeiser, H. H., K. B. Schoepe & M. Wiessler (1988) DNA adduct formation of aristolochic acid I and II in vitro and in vivo. Carcinogenesis, 9, 297-303.

Schwetz, B. A. (2001) From the Food and Drug Administration. JAMA, 285, 2705.

Solis-Calero, C., J. Ortega-Castro, A. Hernandez-Laguna & F. Munoz (2014) DFT study of the mechanism of the reaction of aminoguanidine with methylglyoxal. J Mol Model, 20, 2202.

Stefanovic, V. (1998) Balkan endemic nephropathy: a need for novel aetiological approaches. QJM, 91, 457-63.

Stiborova, M., M. Hajek, E. Frei & H. H. Schmeiser (2001) Carcinogenic and nephrotoxic alkaloids aristolochic acids upon activation by NADPH : cytochrome P450 reductase form adducts found in DNA of patients with Chinese herbs nephropathy. Gen Physiol Biophys, 20, 375-92.

Suji, G. & S. Sivakami (2007) DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage. Amino Acids, 33, 615-21.

Tabi, T., E. Szoko, A. Merey, V. Toth, P. Matyus & K. Gyires (2013) Study on SSAO enzyme activity and anti-inflammatory effect of SSAO inhibitors in animal model of inflammation. J Neural Transm, 120, 963-7.

Talukdar, D., B. S. Chaudhuri, M. Ray & S. Ray (2009) Critical evaluation of toxic versus beneficial effects of methylglyoxal. Biochemistry (Mosc), 74, 1059-69.

Tan, D., Y. Wang, C. Y. Lo, S. Sang & C. T. Ho (2008) Methylglyoxal: its presence in beverages and potential scavengers. Ann N Y Acad Sci, 1126, 72-5.

Tanaka, A., R. Nishida, K. Maeda, A. Sugawara & T. Kuwahara (2000) Chinese herb nephropathy in Japan presents adult-onset Fanconi syndrome: could different components of aristolochic acids cause a different type of Chinese herb nephropathy? Clin Nephrol, 53, 301-6.

Thornalley, P. J. (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 269, 1-11.

Thornalley, P. J. (1993) The glyoxalase system in health and disease. Mol Aspects Med, 14, 287-371.

Thornalley, P. J. (2003) Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans, 31, 1343-8.

Titov, V. N., L. F. Dmitriev & V. A. Krylin (2010) [Methylglyoxal--test for biological dysfunctions of homeostasis and endoecology, low cytosolic glucose level, and gluconeogenesis from fatty acids]. Ter Arkh, 82, 71-7.

Tomida, H., T. Fujii, N. Furutani, A. Michihara, T. Yasufuku, K. Akasaki, T. Maruyama, M. Otagiri, J. M. Gebicki & M. Anraku (2009) Antioxidant properties of some different molecular weight chitosans. Carbohydr Res, 344, 1690-6.

Usami, Y., Y. Okamoto, S. Minami, A. Matsuhashi, N. H. Kumazawa, S. Tanioka & Y. Shigemasa (1994) Migration of canine neutrophils to chitin and chitosan. J Vet Med Sci, 56, 1215-6.

Vanherweghem, J. L., D. Abramowicz, C. Tielemans & M. Depierreux (1996) Effects of steroids on the progression of renal failure in chronic interstitial renal fibrosis: a pilot study in Chinese herbs nephropathy. Am J Kidney Dis, 27, 209-15.

Vanherweghem, J. L., M. Depierreux, C. Tielemans, D. Abramowicz, M. Dratwa, M. Jadoul, C. Richard, D. Vandervelde, D. Verbeelen, R. Vanhaelen-Fastre & et al. (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet, 341, 387-91.

Vanherweghem, L. J. (1998) Misuse of herbal remedies: the case of an outbreak of terminal renal failure in Belgium (Chinese herbs nephropathy). J Altern Complement Med, 4, 9-13.

Vlassara, H. & M. R. Palace (2002) Diabetes and advanced glycation endproducts. J Intern Med, 251, 87-101.

Vlastos, D., H. Moshou & K. Epeoglou (2010) Evaluation of genotoxic effects of semicarbazide on cultured human lymphocytes and rat bone marrow. Food Chem Toxicol, 48, 209-14.

Wang, X., K. Desai, T. Chang & L. Wu (2005) Vascular methylglyoxal metabolism and the development of hypertension. J Hypertens, 23, 1565-73.

Wang, X., K. Desai, J. T. Clausen & L. Wu (2004) Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney Int, 66, 2315-21.

Wang, X., X. Jia, T. Chang, K. Desai & L. Wu (2008) Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens, 26, 765-72.

Wong, M., S. Saad, J. Zhang, S. Gross, W. Jarolimek, H. Schilter, J. A. Chen, A. J. Gill, C. A. Pollock & M. G. Wong (2014) Semicarbazide-sensitive amine oxidase (SSAO) inhibition ameliorates kidney fibrosis in a unilateral ureteral obstruction murine model. Am J Physiol Renal Physiol, 307, F908-16.

Wong, M. Y., S. Saad, C. Pollock & M. G. Wong (2013) Semicarbazide-sensitive amine oxidase and kidney disease. Am J Physiol Renal Physiol, 305, F1637-44.

Yamagishi, S., K. Nakamura, T. Matsui, S. Ueda, K. Fukami & S. Okuda (2008) Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs, 17, 983-96.

Yamawaki, H., K. Saito, M. Okada & Y. Hara (2008) Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells. Am J Physiol Cell Physiol, 295, C1510-7.

Yang, H. Y., J. L. Lin, K. H. Chen, C. C. Yu, P. Y. Hsu & C. L. Lin (2006) Aristolochic acid-related nephropathy associated with the popular Chinese herb Xi Xin. J Nephrol, 19, 111-4.

Yang, K., D. Qiang, S. Delaney, R. Mehta, W. R. Bruce & P. J. O''Brien (2011) Differences in glyoxal and methylglyoxal metabolism determine cellular susceptibility to protein carbonylation and cytotoxicity. Chem Biol Interact, 191, 322-9.

Yang, L., T. Y. Besschetnova, C. R. Brooks, J. V. Shah & J. V. Bonventre (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med, 16, 535-43, 1p following 143.

Youdim, M. B. & M. Tenne (1987) Assay and purification of liver monoamine oxidase. Methods Enzymol, 142, 617-27.

Yu, P. H. & D. M. Zuo (1997) Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications. Diabetologia, 40, 1243-50.

Zatz, R., B. R. Dunn, T. W. Meyer, S. Anderson, H. G. Rennke & B. M. Brenner (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest, 77, 1925-30.

Zeisberg, M., J. Hanai, H. Sugimoto, T. Mammoto, D. Charytan, F. Strutz & R. Kalluri (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med, 9, 964-8.

Zeisberg, M. & E. G. Neilson (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 119, 1429-37.

Zhang, A., D. Shang, J. Zhang, L. Zhang, R. Shi, F. Fu & Y. Tian (2014) A retrospective review of patients with urothelial cancer in 3,370 recipients after renal transplantation: a single-center experience. World J Urol.

Zhou, M., Z. Diwu, N. Panchuk-Voloshina & R. P. Haugland (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem, 253, 162-8.

Zhou, M. & N. Panchuk-Voloshina (1997) A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. Anal Biochem, 253, 169-74.

Zhou, Y., X. Bian, L. Fang, W. He, C. Dai & J. Yang (2013) Aristolochic acid causes albuminuria by promoting mitochondrial DNA damage and dysfunction in podocyte. PLoS One, 8, e83408.

Zhu, D., L. Wang, Q. Zhou, S. Yan, Z. Li, J. Sheng & W. Zhang (2014) (+)-Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice. Mol Nutr Food Res, 58, 2249-60.

Zieman, S. J. & D. A. Kass (2004) Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs, 64, 459-70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔