(44.192.112.123) 您好!臺灣時間:2021/03/04 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王信凱
研究生(外文):Sin-Kai Wang
論文名稱:Steviol衍生物之合成與其細胞毒性之探討
論文名稱(外文):Synthesis and Cytotoxic Effects of Steviol Derivatives
指導教授:黃偉展黃偉展引用關係
指導教授(外文):Wei-Jan Huang
口試委員:顧記華李美賢吳姿樺
口試委員(外文):Tzu-Hua Wu
口試日期:2015-07-09
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:220
中文關鍵詞:Steviol細胞毒性
外文關鍵詞:Steviolcytotoxicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以天然物-甜菊(Stevia rebaudiana)葉部的抽取物stevioside為原料進行一系列化學結構修飾與活性關係之研究。Stevioside經不同化學方法處理下可獲得兩種主產物: isosteviol與steviol,匯整近幾年來相關抗癌文獻已證實steviol衍生物較isosteviol衍生物容易提升抗癌細胞之毒性,故以steviol作為修飾起始物。三種有利於活性提升的結構片段(enone 結構、疏水性碳氫短鏈 和cinnamic acid結構)分別修飾於D環和C19位置形成cinnamoylation 衍生物之模板,並於cinnamic acid之苯環結構上不同位置以不同基團(甲基、甲氧基、羥基和乙醯氧基)作為取代基所合成的25個系列化合物,包含200~210 (STD-3~13)、213~219 (STD-15~21)和221~227 (STD-23~29)。另一方面亦於steviol C19位置經amination反應,合成出228 (STD-30)、229 (STD-31)和232 (STD-34) 3個amide化合物。

細胞之活性測試方面,以SRB assay和MTT assay評估35個steviol衍生物於PC-3、HCT-116和A549癌細胞株的細胞毒性。結果顯示化合物223 (STD-25)為cinnamoylation衍生物中對PC-3毒性最佳者(IC50=1.38 μM),而雜環化合物230 (STD-32, IC50=0.55 μM)與amide衍生物228 (STD-30, IC50=0.46 μM)則表現出更優異的活性;碘化合物211 (STD-14, IC50=1.99 μM)於HCT116之活性皆比cinnamoylation衍生物與amide衍生物佳;另一方面,本研究設計之化合物對於A549的靈敏性不佳,無法進一步作探討。所合成之化合物對不同細胞株呈現顯著差異之細胞毒性,其藥理作用機轉不明,有待後續之探討。

整體而言,Amide衍生物228 (STD-30)於PC-3和HCT116兩細胞株皆展現出優越的細胞毒性,為本研究中最具潛力性衍生物,值得進一步做藥理機轉之研究。
Stevioside extracted from the leave of natural product, Stevia rebaudiana, was used as crude material to synthesize its derivatives and further discuss the structure-activity relationship. Isosteviol and steviol are the two main products obtained from various methodology and the latter one was reported to possess more pronounced effectiveness in anticancer activity than isosteviol derivatives against tumor cell lines. Therefore, steviol was selected as staring material in current study. Three kinds of structure moiety including enone structure, hydrophobic short chain and cinnamic acid structure were modified in D-ring and C-19 carboxyl group to form cinnamoylation derivative as model. Twenty-five compounds were then synthesized for difference group containing methyl group, methoxy group, hydroxyl group and acetoxy group to be aromatic substituent of cinnamic acid. On the other hand, three amide compounds including 228 (STD-30), 229 (STD-31) and 232 (STD-34) have been synthesized by C19 amination reaction from compound 196.
The cytotoxicity of those 35 synthesized steviol derivatives were tested against PC-3, HCT116 and A549 carcinoma cells with SRB assay and MTT assay. Results indicated that compound 223 (STD-25) displayed much higher activity than the other cinnamoylation derivatives. However, heterocyclic compound 230 (STD-32, IC50=0.55 μM) and amide derivative showed more superior activities. Iodine derivative 211 (STD-14, IC50=1.99 μM) displayed better cytotoxic activity against HCT116 cell line than cinnamoylatoin and amide derivatives. No significant activity was observed for A549 cells. The pharmacological mechanism was still unclear.
In summary, amide derivative 228 exhibited superior cytotoxic activity for PC-3 and HCT116 and was the most potent compound among those steviol derivatives which is worth to study its pharmacological mechanism against cancer cells.
摘要…………………………………………………………………………………………………………………………………1
英文摘要…………………………………………………………………………………………………………………………2
目錄…………………………………………………………………………………………………………………………………4
附圖目錄…………………………………………………………………………………………………………………………5
名詞縮寫………………………………………………………………………………………………………………………10
壹、緒論
1-1. 背景……………………………………………………………………………………………………………………1
1-2. Steviol與kaurenoic acid類化學結構修飾之文獻回顧…………3
1-3. Isosteviol化學結構修飾之文獻回顧………………………………………………14
1-4. 本論文相關結構之設計與研究動機………………………………………………………19
貳、結果與討論
2-1. 化學結構修飾…………………………………………………………………………………………………22
2-1-1. D環結構之修飾…………………………………………………………………………………………22
2-1-2. 19位置衍生物之修飾……………………………………………………………………………23
2-2. 生物活性評估結果………………………………………………………………………………………38
參、結論………………………………………………………………………………………………………………………44
肆、實驗方法
4-1. 使用儀器與器材……………………………………………………………………………………………47
4-2. 藥品與溶劑………………………………………………………………………………………………………47
4-3. 化學結構修飾之步驟與化合物之物理資料…………………………………………50
4-4. 生物活性檢測…………………………………………………………………………………………………86
伍、參考文獻………………………………………………………………………………………………………………88
陸、附圖…………………………………………………………………………………………………………………………96
1. 楊文乾,神奇草藥大圖鑑 (2),林鬱出版社,台北,2001,610.
2. Hanson, J. R.; De Oliveria, B. H. Stevioside and related sweet diterpenoid Glycosides. Nat. Prod. Rep. 1993, 10, 301-309.
3. Bell, F. Stevioside : a unique sweetening agent. Chem. Ind. 1954, 17, 897-898.
4. ~ Soejarto, D. D.; Kinghorn, A. D.; Farnsworth, N. R. Potential sweetening agents of plant origin. III. organoleptic evaluation of stevial leaf herbarium samples for sweetness. J. Nat. Prod. 1982, 45, 590-599.
5.~ Wood, H.B.; Allerton, R.; Diehel, H.W.; Fletcher, H.G. Stevioside I. the structure of the glucose moieties. J. Org. Chem. 1995, 20, 875-883.
6. ~Wang Z.; Xue L.; Guo C. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-κB
pathway. Biochem. Biophys. Res. Commun. 2012, 417, 1280-1285.
7. ~Brusick D. J. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem. Toxicol. 2008, 46, S83-S91.
8. ~ Melis, M. S. Stevioside effect on renal function of normal and hypertensive rats. J. Ethnopharmacol. 1992, 36, 213-217.
9. ~ Kinghorn, A. D.; Soejarto, D. D. Discovery of terpenoid and phenolic sweeteners from plants. Pure Appl. Chem. 2002, 74, 1169-1179.
10.~Von Schmeling G. A. Caa-hee edulcorante nao calorico (Stevia rebaudiana Bertoni). Boletim do Sanatorio Sao Lucas. 1967, 5, 1-14.
11.~Boeckh, E. M. A.; Humbadldt, G. Efeitos cardiocirculatiorios de extrato aquoso total em individuos normais e do esteviosideo em ratos. Ciencia e Cultura. 1981, 32, 208-210.
12.~Chan, P.; Tomlinson, B.; Chen, Y. J.; Liu, J. C.; Hsieh, M. H.; Cheng, J. T. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br. J. Clin. Pharmacol. 2000, 50, 215-220.
13.~Chen, T. H.; Chen, S. C.; Chan, P.; Chu, Y. L.; Yang, H. Y.; Cheng, J. T. Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med. 2005, 71,108-113.
14.~Jeppesen, P. B.; Gregersen, S.; Poulsen, C. R.; Hermansen, K. Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosin triphosphate-sensitive K+-channel activity. Metabolism. 2000, 49, 208-214.
15.~Yasukawa, K.; Kitanaka, S.; Seo, S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol. Pharm. Bull. 2002, 25, 1488-1490.
16.~Takasaki, M.; Konoshima, T.; Kozuka, M.; Tokuda, H.; Kakayasu, J.; Nishino, H.; Miyakoshi, M.; Mizutani, K.; Lee, K. H. Cancer preventive agents. Part 8: Chemopreventive effects of stevioside and related compounds. Bioorg. Med. Chem. 2009, 17, 600-605.
17.~Tomita, T.; Sato, N.; Arai, T.; Shiraishi, H.; Sato, M.; Takeush, M.; Kamio, Y. Bactericidal activity of a germented hot-water extract from Stevia rebaudiana Bertoni towards Enterohemorrhagic Escherichia coli O157: H7 and other food-borne pathogenic bacteria. Microbiol. Immuol. 1997, 41, 1005-1009.
18.~Takahashi, K.; Matsuda, M.; Ohashi, K.; Taniguchi, K; Nakagomi, O.; Abe, Y.; Mori, S,; Sato, N.; Okutani, K.; Shigeta, S. Analysis of anti-rotaviris activity of extract from Stevia rebaudiana. Antiviral Res. 2001, 49, 15-24.
19.~Chatsudthipong, V.; Muanprasat, C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009, 121, 41-54.
20.~Sakamoto, I.; Yamasaki, K.; Tanaka, O. Application of 13C-NMR Spectroscopy to Chemistry of Natural Glycosides: Rebaudioside-C, a New Sweet Diterpene Glycoside of Stevia re-baudiana. Chrm. Pharm. Bull, 1977, 25, 844-846.
21.~Xu, D.; Zhang, S.; Foster, D. J.; Wang, J. The effects of isosteviol against myocardium injury induced by ischaemia-reperfusion in the isolated guinea pig heart. Clin. Exp. Pharmacol. Physiol. 2007, 34, 488-493.
22.~Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki. Y.; Murakami-Nakai, C.; Kuriyama, I.; Takeuchi, T.; Sugawara, F.; Yoshida, H. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005, 77, 2127-2140.
23.~Ma, J.; Ma, Z.; Wang, J.; Milne, R. W.; Xu, D.; Davey, A. K.; Evans, A. M. Isosteviol reduces plasma glucose levels in the intravenous glucose tolerance test in Zucker diabetic fatty rats. Diabetes Obesity Metab. 2007, 9, 597-599.
24.~Liu, J. C.; Kao, P. E.; Hsieh, M. H.; Chen, Y. J.; Chan, P. The antihypertensive effects of stevioside derivative isosteviol in spontaneously hypertensive rats. Acta Cardiol. Sin. 2001, 17, 133-140.
25.~Lin, C. L.; Lin, S. J.; Huang W. J.; Ku, Y. L.; Tsai, T. H.; Hsu, F. L. Novel ent-beyeran-19-oic acids from biotransformations of isosteviol metabolites by Mortierella Isabellina. Planta Med. 2007, 73, 1581-1587.
26.~Roy, A.; Roberts, F. G.; Wilderman, P. R.; Zhou, K.; Peters, R. J.; Coates, R. M. 16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: Potent mechanism-based inhibitors of recombinant ent-kaurene synthase from Arabidopsis Thaliana. J. Am. Chem. Soc. 2007, 129, 12453-12460.
27.~Wong, K. L.; Lin, J. W.; Liu, J. C.; Yang, H. Y.; Kao, P. F.; Chen, C. H.; Loh, S. H.; Chiu, W. T.; Cheng, T. H.; Lin, J. G.; Hong, H. J. Antiproliferative effect of isosteviol on angiotensin-II-treated rat aortic smooth muscle cells. Pharmacology. 2006, 76, 163-169.
28.~Chang, S. F.; Yang, L. M.; Lo, C. H.; Liaw, J. H.; Wang, L. H.; Li, S. J. Microbial transformation of isosteviol and bioactivities against the glucocorticoid/androgen response elements. J. Nat. Prod. 2008, 71, 87-92.
29.~Kataev, V. E.; Militsina, O. I.; Strobykina, I. Yu.; Kovylyaeva, G. I.; Musin, R. Z.; Fedorova, O. V.; Rusinov, G. L.; Zueva, M. N.; Mordovskoi, G. G.; Tolstikov, A. G.; Synthesis and anti-tuberculoses activity of diesters based on isosteviol and dicarboxylic acids. Pharm. Chem. J., 2006, 40, 374-375.
30.~Li, J.; Zhang, D; Wu, X. Synthesis and biological evaluation of novel exo-methylene cyclopentanone tetracyclic diterpenoids as antitumor agents. Bioorg. Med. Chem. Lett. 2011, 21, 130–132.
31.~Cui, Q.; Yu, J. H.; Wu, J. N.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. P53-mediated cell cycle arrest and apoptosis through a aspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast Cancer cells. Acta. Pharmacol. Sin. 2007, 28, 1057-1066.
32.~Fujita, E.; Nagao, Y.; Kohno, T.; Matsuda, M.; Ozaki, M. Antitumor activity of acylated oridonin. Chem. Pharm. Bull. 1981, 11, 3208-3213.
33.~Xu, J.; Yang, J.; Ran, Q.; Wang, L.; Liu, L.; Wang, Z.; Wu, X.; Hua, W.; Yuan, S.; Zhang, L.; Shen, M.; Ding, Y. Synthesis and biological evaluation of novel 1-O- and 14-O-derivatives of oridonin as potential anticancer drug candidates. Bioorg. Med. Chem. Lett. 2008, 18, 4741-4744.
34.~Li, X.; Xiao, W.; Pu, J.; Ban, L.; Shen, Y.; Weng, Z.; Li, S.; Sun, H. Cytotoxic ent-kaurene diterpenoids from Isodon phyllostachys. Phytochemistry 2006, 13, 1336-1340.
35.~Zeng, Y. F.; Wu, J. Q.; Shi, L. Y.; Wang, K.; Zhou, B.; Tang, Y.; Zhang, D. Y.; Wu, Y. C.; Hua, W. Y.; Wu, X. M. Synthesis and evaluation of cytotoxic effects of novel α-methylenelactone tetracyclic diterpenoids. Bioorg. Med. Chem. Lett. 2012, 22, 1922–1925.
36.~Sun, C. M.; Syu, W. J.; Don, M. J.; Lu, J. J.; Lee, G. H. Cytotoxic sesquiterpene lactones from the root of Saussurea lappa. J. Nat. Prod. 2003, 66, 1175-1180.
37.~Kupchan, S. M.; Hemingway, R. J.; Werner, D.; Karim, A. Tumor inhibitors. XLVI. Vernolepin, a novel sesquiterpene dilactone tumor inhibitor from Vernonia hymenolepis A. Rich. J. Org. Chem. 1969, 34, 3903-3907.
38.~Zou, M.; Yu, S. S.; Wang, K.; Zhang, D. Y.; Wu X. M.; Hua, W. Y. Glycosylation of ent-kaurene derivatives and an evaluation of their cytotoxic activities. Chin. J. Nat. Med. 2013, 11, 289-295.
39.~Jacob, J. N.; Tazawa, M. J. Glucose–aspirin: Synthesis and in vitro anti-cancer activity studies. Bioorg. Med. Chem. Lett. 2012, 22, 3168-3171.
40.~Ukiya, M.; Sawada, S.; Kikuchi, T.; Kushi, Y.; Fukatsu, M.; Akihisa, T. Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against human cancer cell lines. Chem. Biodivers. 2013, 10, 177-188.
41.~Hueso-Falcon ,I.; Giron c, N.; Velasco, P.; Amaro-Luis, J. M.; Ravelo, A. D.; de las Heras, D.; Hortelano, S.; Estevez-Braun, A. Synthesis and induction of apoptosis signaling pathway of ent-kaurane derivatives. Bioorg. Med. Chem. 2010, 18, 1724–1735.
42.~Andrianasolo, E. H.; Haramaty, L.; Degenhardt, K.; Mathew, R.; White, E.; Lutz, R.; Falkowski, P. Induction of apoptosis by diterpenes from the soft Coral Xenia Elongata. J. Nat. Prod. 2007, 70, 1551-1557.
43.~Duarte, N.; Varga, A.; Cherepnev, G.; Radics, R.; Molnar, J.; Ferreira, M. J. Apoptosis induction and modulation of P-glycoprotein mediated multidrug resistance by new macrocyclic lathyrane-type diterpenoids. Bioorg. Med. Chem. 2007, 15, 546-554.
44.~Yang, L.; Wu, D.; Luo, K.; Wu, S.; Wu, P. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in Hepatocellular Carcinoma (SMMC-7721) cells. Cancer Lett. 2009, 276, 180-188.
45.~Nagashima, F.; Kondoh, M.; Kawase, M.; Simizu, S.; Osada, H.; Fujii, M.; Watanabe, Y.; Sato, M.; Asakawa, Y. Apoptosis-inducing properties of ent-kaurene-type diterpenoids from the Liverwort Jungermannia Truncate. Planta Med. 2003, 69, 377-379.
46.~Ruiz, Y.; Rodriguez, J.; Arvelo, F.; Usubillaga, A.; Monsalve, M.; Diez, N.; Galindo-Castro, I. Cytotoxic and apoptosis-inducing effect of ent-15-oxo-kaur-16-en-19-oic acid, a derivative of grandiflorolic acid from Espeletia Schultzii. Phytochemistry 2008, 69, 432-428.
47.~Wu, Y.; Dai, G. F.; Yang, J. H.; Zhang, Y. X.; Zhu, Y.; Tao, J.C. Stereoselective synthesis of 15- and 16-substituted isosteviol derivatives and their cytotoxic activities. Bioorg. Med. Chem. Lett. 2009, 19, 1818–1821.
48.~Oliveira, B. H.; Santos, M. C.; Leal, P. C. Biotransformation of the diperpenoid, isosteviol, by Aspergillus Niger, Penicillium Chrysogenum and Rhizopus Arrhizus. Phytochem. 1999, 51, 737-741.
49.~Zhang, T.; Lu, L. H.; Liu, H.; Wang, J. W.; Wang, R. X.; Zhang, Y. X.; Tao, J. C. D-ring modified novel isosteviol derivatives: Design, synthesis and cytotoxic activity evaluation. Bioorg. Med. Chem. Lett. 2012, 22, 5827-5832.
50.~Shao, Y.; Zhang, H. K.; Ding, H.; Quan, H. T.; Lou, L. G.; Hu, L. H. Synthesis and Structure-Activity Relationship Studies of Cytotoxic Anhydrovinblastine Amide Derivatives. J. Nat. Prod. 2009, 72, 1170-1177.
51.~Ghirmai, S.; Azar, M. R.; Polgar, W. E.; Berzetei-Gurske, I.; Cashman, J. R. Synthesis and Biological Evaluation of α- and β-6-Amido Derivatives of 7-Cyclopropylmethyl-3, 14β-dihydroxy-4, 5α-epoxymorphinan: Potential lcohol-Cessation Agents. J. Med. Chem. 2008, 51, 1913-1924.
52.~Li, Z.; Zhou, Z. L.; Miao, Z. H.; Lin, L. P.; Feng, H. J.; Tong, L. J.; Ding, J.; Li, Y. C. Design and Synthesis of Novel C14-Hydroxyl Substituted Triptolide Derivatives as Potential Selective Antitumor Agents. J. Med. Chem. 2009, 52, 5115-5123.
53.~Zhu, S. L.; Wu, Y.; Liu, C. J.; Wei, C. Y.; Tao, J. C.; Liu, H. M. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents. Bioorg. Med. Chem. Lett. 2013, 23, 1343-1346.
54.~Mohamed, N. R.; Elmegeed, G. A.; Abd-ElMalek, H. A.; Younis, M. Synthesis of biologically active steroid derivatives by the utility of Lawesson''s reagent. Steroids 2005, 70, 131-136.
55.~Dewang, P. M.; Kim, D. K. Synthesis and biological evaluation of 2-pyridyl-substituted pyrazoles and imidazoles as transforming growth factor-beta type 1 receptor kinase inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4228-4232.
56.~Batista, R.; García, P. A.; Castro, M. A.; Miguel del Corral, J. M.; Speziali, N. L.; de P. Varotti, F.; de Paula, R. C.; García-Fernández, L. F.; Francesch, A.; San Feliciano, A.; de Oliveira, A. B. Synthesis, cytotoxicity and antiplasmodial activity of novel ent-kaurane derivatives. Eur. J. Med. Chem. 2013, 62, 168-176.
57.~陳怡君,Isosteviol化學結構修飾,台北醫學大學藥學研究所碩士論文,台北,2009.
58.~Fu, J.; Yang, Y.; Zhang, X. W.; Mao, W. J.; Zhang, Z. M.; Zhu, H. L. Discovery of 1H-benzo[d][1,2,3]triazol-1-yl 3,4,5-trimethoxybenzoate as a potential antiproliferative agent by inhibiting histone deacetylase. Bioorg. Med. Chem. 2010, 18, 8457-8462.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔