(3.237.97.64) 您好!臺灣時間:2021/03/03 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姚采涵
研究生(外文):Tsai-Han Yao
論文名稱:假繁縷與扁桃斑鳩菊之活性成分探討
論文名稱(外文):Studies on the Bioactive Constituents from Glinus oppositifolius and Vernonia amygdalina
指導教授:黃偉展黃偉展引用關係
口試委員:顧記華李美賢吳姿樺
口試日期:2015-07-09
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:231
中文關鍵詞:假繁縷扁桃斑鳩菊斑鳩菊皂苷B5降血糖
外文關鍵詞:Glinus oppositifoliusVernonia amygdalinavernonioside B5hypoglycemic.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部份,第一部份主要探討粟米草科(Molluginaceae)植物假繁縷Glinus oppositifolius全草甲醇萃取物之活性成分探討。假繁縷全草甲醇萃取物經由各種層析技術,共分離出十六個化合物,根據核磁共振光譜分析、物理數據及文獻資料比對後,其結構分別確定為:kaempferol (1)、kaempferol 3-O-β-D-glucopyranoside (2)、kaempferol 3-O-β-D-galactopyranoside (3)、vicenin II (4)、p-hydroxybenzoic acid (5)、vanillic acid (6)、trans-ferulic acid (7)、trans-cinnamic acid (8)、p-hydroxyacetophenone (9)、vanillin (10)、lotoidoside E (11)、spergulin A (12)、spergulacin (13)、β-sitosterol (14)、spinasterol 3-O-β-D-glucopyranoside (15)及adenosine (16),其中化合物2、11、15則從假繁縷中為首次被分離出來。另外,第二部份進行菊科(Asteraceae)植物扁桃斑鳩菊Vernonia amygdalina葉子甲醇萃取物之活性成分。扁桃斑鳩菊葉部醇萃取物經由各種層析管柱及不同溶媒系統層析後,共分離出十二個化合物,根據核磁共振光譜分析、物理數據及文獻資料比對後,其結構分別確定為:L-phenylalanine (17)、uracil (18)、(R)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (19)、(Z)-2-(4-hydroxybenzyl)butenedioic acid (20)、p-hydroxyphenyl itaconic acid (21)、vernonioside B2 (22)、vernonioside B5 (23)、chlorogenic acid (24)、1,3-O-dicaffeoylquinic acid (25)、methyl 3,5-O-dicaffeoylquinate (26)、luteolin (27)及luteolin-7-O-β-D-glucopyranoside (28)。其中化合物17, 18為由扁桃斑鳩菊中首次被分離出來,而化合物19, 21為首次從天然物中分離出來,化合物23則為新化合物。利用小鼠肝臟細胞(FL83B)葡萄糖攝取,評估經純化後之化合物活性,化合物濃度2.5 µM下,假繁縷分離之化合物4 (101.3%)、11 (104.1%)、12 (124.1%)具有促進效果,扁桃斑鳩菊葉部分離之化合物17 (111.0%)、20 (106.4%)、25 (104.3%)有促進作用。
This study divided into two parts. Part one aimed to investigate the active ingredients of the MeOH extract of Glinus oppositifolius, which belongs to Molluginaceae. Sixteen compounds were isolated via various chromatographic techniques and their structures were further identified according to their 1D, 2D NMR spectroscopy and physical data. They are kaempferol (1), kaempferol 3-O-β-D-glucopyranoside (2), kaempferol 3-O-β-D-galacto-pyranoside (3), vicenin II (4), p-hydroxybenzoic acid (5), vanillic acid (6), trans-ferulic acid (7), trans-cinnamic acid (8), p-hydroxyacetophenone (9), vanillin (10), lotoidoside E (11), spergulin A (12), spergulacin (13), β-sitosterol (14), spinasterol 3-O-β-D-glucopyranoside (15), adenosine (16). Among them, the isolation of compound 2, 11 and 15 from Glinus oppositifolius are the first report.
Part two aimed to investigate the active ingredients of the MeOH extract of Vernonia amygdalina, which belongs to Asteraceae. Twelve compounds were isolated via column chromatography with various solvent systems and their structures were further identified according to their 1D, 2D NMR spectroscopy and physical data. They are L-phenylalanine (17), uracil (18), (R)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (19), (Z)-2-(4-hydroxy-benzyl)butenedioic acid (20), p-hydroxyphenyl itaconic acid (21), vernonioside B2 (22), vernonioside B5 (23), chlorogenic acid (24), 1,3-O-dicaffeoylquinic acid (25), methyl 3,5-O-dicaffeoylquinate (26), luteolin (27), luteolin-7-O-β-D-glucopyranoside (28). Among them, compound 17, 18 are the first report from Vernonia amygdalina. Additionally, the obtained compound 19, 21 to be found from natural resources are the first case and compound 23 is new compound.
Among the isolated compounds from Glinus oppositifolius, 2.5 µM of compounds 4, 11, 12 were demonstrated to enhance glucose uptake with 101.3%, 104.1%, 124.1%, respectively, using a mouse liver cell FL83B. And the isolated compounds from Vernonia amygdalina, 2.5 µM of compounds 17, 20, 25 were demonstrated to enhance glucose uptake with 111.0%, 106.4%, 104.3%, respectively, using a mouse liver cell FL83B.
總目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
總目錄 Ⅳ
表目錄 Ⅷ
圖目錄 Ⅹ
縮寫表 ⅩⅦ
第一章 緒論 1
第一節、假繁縷植物介紹 1
1.1.1粟米草科植物之介紹 1
1.1.2台灣粟米草科植物之介紹 1
1.1.3假繁縷之介紹 1
1.1.4假繁縷化學成分及藥理研究之文獻回顧 3
1.1.4-1假繁縷化學成分之相關研究 3
1.1.4-2假繁縷藥理之相關研究 9
第二節、扁桃斑鳩菊植物介紹 11
1.2.1菊科植物之介紹 11
1.2.2斑鳩菊屬植物之介紹 11
1.2.3扁桃斑鳩菊之介紹 11
1.2.4扁桃斑鳩菊化學成分及藥理研究之文獻回顧 13
1.2.4-1扁桃斑鳩菊化學成分之相關研究 13
1.2.4-2扁桃斑鳩菊藥理之相關研究 17
第三節、糖尿病介紹 19
1.3.1糖尿病分類 19
1.3.2糖尿病藥物 20
第四節、研究目的 22
第二章 實驗結果與討論 23
第一節、假繁縷之化學成分 23
2.1.1化合物1-16之分離 23
2.1.2化合物1-16之構造解析 25
2.1.2-1 Flavonoid類
化合物1 (Kaempferol)之結構解析 25
化合物2 (Kaempferol 3-O-β-D-glucopyranoside)之結構解析 25
化合物3 (Kaempferol 3-O-β-D-galactopyranoside)之結構解析 25
化合物4 (Vicenin II)之結構解析 25
2.1.2-2 Aromatic類
化合物5 (p-Hydroxybenzoic acid)之結構解析 41
化合物6 (Vanillic acid)之結構解析 45
化合物7 (trans-Ferulic acid)之結構解析 45
化合物8 (trans-Cinnamic acid)之結構解析 45
化合物9 (p-Hydroxyacetophenone)之結構解析 54
化合物10 (Vanillin)之結構解析 58
2.1.2-3 Triterpenoid saponin類
化合物11 (Lotoidoside E)之結構解析 62
化合物12 (Spergulin A)之結構解析 70
化合物13 (Spergulacin)之結構解析 70
2.1.2-4 Steroid類
化合物14 (β-Sitosterol)之結構解析 84
化合物15 (Spinasterol-3-O-β-D-glucopyranoside)之結構解析 88
2.1.2-5 Nucleoside類
化合物16 (Adenosine)之結構解析 97
2.1.3 假繁縷化學成分之探討 104
2.1.4 假繁縷降血糖活性之評估 108
2.1.5 假繁縷研究之結論 109
第二節、扁桃斑鳩菊葉部之化學成分 110
2.2.1 化合物17-28之分離 110
2.2.2 化合物17-28之構造解析 112
2.2.2-1 Amino acid類
化合物17 (L-Phenylalanine)之結構解析 112
2.2.2-2 Nucleoside類
化合物18 (Uracil)之結構解析 116
2.2.2-3 Alkaloid類
化合物19 ((R)-1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid)之結構解析
122
2.2.2-4 Aromatic類
化合物20 ((Z)-2-(4-Hydroxybenzyl)butenedioic acid)之結構解析 126
化合物21 (p-Hydroxyphenyl itaconic acid)之結構解析 132
2.2.2-5 Steroid saponin類
化合物22 (Vernonioside B2)之結構解析 138
化合物23 (Vernonioside B5)之結構解析 138
2.2.2-6 Phenolic acid類
化合物24 (Chlorogenic acid)之結構解析 154
化合物25 (1,3-O-Dicaffeoylquinic acid)之結構解析 154
化合物26 (Methyl 3,5-O-dicaffeoylquinate)之結構解析 154
2.2.2-7 Flavonoid類
化合物27 (Luteolin)之結構解析 173
化合物28 (Luteolin-7-O-β-D-glucopyranoside)之結構解析 173
2.2.3 扁桃斑鳩菊葉部化學成分之探討 181
2.2.4 扁桃斑鳩菊葉部降血糖活性之評估 184
2.2.5 扁桃斑鳩菊葉部研究之結論結論 185
第三章 總結 187
第四章 實驗部分 188
第一節、實驗材料與方法 188
3.1.1 植物 188
3.1.2 儀器 188
3.1.3 層析法 188
3.1.4 一般化學溶媒及試藥 189
3.1.5 降血糖之活性評估 189
第二節、化合物之物理數據 191
參考文獻 207

表目錄
Table 1. Properties of available glucose-lowering agents in type 2 diabetes 21
Table 2. 1H-NMR data of compounds 1-4 [δ in ppm, mult. (J in Hz)] 28
Table 3. 13C-NMR data of compounds 1-4 29
Table 4. Spectral data of p-hydroxybenzoic acid (5) 42
Table 5. 1H-NMR data of compounds 6-8 [δ in ppm, mult. (J in Hz)] 46
Table 6. 13C-NMR data of compounds 6-8 47
Table 7. Spectral data of p-hydroxyacetophenone (9) 55
Table 8. Spectral data of vanillin (10) 59
Table 9. Spectral data of lotoidoside E (11) 64
Table 10. 1H-NMR data of compounds 12 and 13 [δ in ppm, mult. (J in Hz)] 72
Table 11. 13C-NMR data of compounds 12 and 13 74
Table 12. Spectral data of β-sitosterol (14) 85
Table 13. Spectral data of spinasterol-3-O-β-D-glucopyranoside (15) 90
Table 14. Spectral data of adenosine (16) 98
Table 15. The yield of compounds 1-16 from the leaves of Glinus oppositifolius 107
Table 16. Spectral data of L-phenylalanine (17) 113
Table 17. Spectral data of uracil (18) 117
Table 18. Spectral data of (R)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid
(19) 123
Table 19. Spectral data of (Z)-2-(4-hydroxybenzyl)butenedioic acid (20) 127
Table 20. Spectral data of p-hydroxyphenyl itaconic acid (21) 133
Table 21. 1H-NMR data of compounds 22 and 23 [δ in ppm, mult. (J in Hz)] 140
Table 22. 13C-NMR data of compounds 22 and 23 142
Table 23. 1H-NMR data of compounds 24-26 [δ in ppm, mult. (J in Hz)] 156
Table 24. 13C-NMR data of compounds 24-26 157
Table 25. 1H-NMR data of compounds 27 and 28 [δ in ppm, mult. (J in Hz)] 173
Table 26. 13C-NMR data of compounds 27 and 28 174
Table 27. The yield of compounds 17-28 from the leaves of Vernonia amygdalina.
182
Table 28. Compounds isolated from Vernonia amygdalina 185


圖目錄
Fig. 1. The photo of Glinus oppositifolius 2
Fig. 2. The photot of Vernonia amygdalina 12
Fig. 3. 1H-NMR spectrum of kaempferol (1) (methanol-d4, 500 MHz) 30
Fig. 4. 13C-NMR spectrum of kaempferol (1) (methanol-d4, 125 MHz) 31
Fig. 5. 1H-NMR spectrum of kaempferol 3-O-β-D-glucopyranoside (2) (acetone-d6
+D2O, 500 MHz) 32
Fig. 6. 13C-NMR spectrum of kaempferol 3-O-β-D-glucopyranoside (2) (acetone-d6
+D2O, 125 MHz) 33
Fig. 7. HMBC spectrum of kaempferol 3-O-β-D-glucopyranoside (2) (acetone-d6
+D2O, 500 MHz) 34
Fig. 8. 1H-NMR spectrum of kaempferol 3-O-β-D-galactopyranoside (3) (methanol
-d4, 500 MHz) 35
Fig. 9. 13C-NMR spectrum of kaempferol 3-O-β-D-galactopyranoside (3) (methanol
-d4, 125 MHz) 36
Fig.10. HMBC spectrum of kaempferol 3-O-β-D-galactopyranoside (3) (methanol
-d4, 500 MHz) 37
Fig.11. 1H-NMR spectrum of vicenin II (4) (DMSO-d6, 500 MHz) 38
Fig.12. 13C-NMR spectrum of vicenin II (4) (DMSO-d6, 125 MHz) 39
Fig.13. HMBC spectrum of vicenin II (4) (DMSO-d6, 500 MHz) 40
Fig.14. 1H-NMR spectrum of p-hydroxybenzoic acid (5) (methanol-d4, 500 MHz) 43
Fig.15. 13C-NMR spectrum of p-hydroxybenzoic acid (5) (methanol-d4, 125 MHz)
44
Fig.16. 1H-NMR spectrum of vanillic acid (6) (methanol-d4, 500 MHz) 48
Fig.17. 13C-NMR spectrum of vanillic acid (6) (methanol-d4, 125 MHz) 49
Fig.18. 1H-NMR spectrum of trans-ferulic acid (7) (methanol-d4, 500 MHz) 50
Fig.19. 13C-NMR spectrum of trans-ferulic acid (7) (methanol-d4, 125 MHz) 51
Fig.20. 1H-NMR spectrum of trans-cinnamic acid (8) (methanol-d4, 500 MHz) 52
Fig.21. 13C-NMR spectrum of trans-cinnamic acid (8) (methanol-d4, 125 MHz) 53
Fig.22. 1H-NMR spectrum of p-hydroxyacetophenone (9) (acetone-d6, 500 MHz) 56
Fig.23. 13C-NMR spectrum of p-hydroxyacetophenone (9) (acetone-d6, 125 MHz) 57
Fig.24. 1H-NMR spectrum of vanillin (10) (acetone-d6+D2O, 500 MHz) 60
Fig.25. 13C-NMR spectrum of vanillin (10) (acetone-d6+D2O, 125 MHz) 61
Fig.26. 1H-NMR spectrum of lotoidoside E (11) (pyridine-d5, 500 MHz) 66
Fig.27. 13C-NMR spectrum of lotoidoside E (11) (pyridine-d5, 125 MHz) 67
Fig.28. HMQC spectrum of lotoidoside E (11) (pyridine-d5, 500 MHz) 68
Fig.29. HMBC spectrum of lotoidoside E (11) (pyridine-d5, 500 MHz) 69
Fig.30. 1H-NMR spectrum of spergulin A (12) (pyridine-d5, 500 MHz) 76
Fig.31. 13C-NMR spectrum of spergulin A (12) (pyridine-d5, 125 MHz) 77
Fig.32. HMQC spectrum of spergulin A (12) (pyridine-d5, 500 MHz) 78
Fig.33. HMBC spectrum of spergulin A (12) (pyridine-d5, 500 MHz) 79
Fig.34. 1H-NMR spectrum of spergulacin (13) (pyridine-d5, 500 MHz) 80
Fig.35. 13C-NMR spectrum of spergulacin (13) (pyridine-d5, 125 MHz) 81
Fig.36. HMQC spectrum of spergulacin (13) (pyridine-d5, 500 MHz) 82
Fig.37. HMBC spectrum of spergulacin (13) (pyridine-d5, 500 MHz) 83
Fig.38. 1H-NMR spectrum of β-sitosterol (14) (CDCl3, 500 MHz) 86
Fig.39. 13C-NMR spectrum of β-sitosterol (14) (CDCl3, 125 MHz) 87
Fig.40. 1H-NMR spectrum of spinasterol-3-O-β-D-glucopyranoside (15) (pyridine
-d5, 500 MHz) 92
Fig.41. 13C-NMR spectrum of spinasterol-3-O-β-D-glucopyranoside (15) (pyridine
-d5, 125 MHz) 93
Fig.42. COSY spectrum of spinasterol-3-O-β-D-glucopyranoside (15) (pyridine-d5
, 500 MHz) 94
Fig.43. COSY spectrum of spinasterol-3-O-β-D-glucopyranoside (15) (pyridine-d5
, 500 MHz) 95
Fig.44. HMBC spectrum of spinasterol-3-O-β-D-glucopyranoside (15) (pyridine-d5
, 500 MHz) 96
Fig.45. 1H-NMR spectrum of adenosine (16) (DMSO-d6, 500 MHz) 99
Fig.46. 13C-NMR spectrum of adenosine (16) (DMSO-d6, 125 MHz) 100
Fig.47. HMQC spectrum of adenosine (16) (DMSO-d6, 500MHz) 101
Fig.48. COSY spectrum of adenosine (16) (DMSO-d6, 500MHz) 102
Fig.49. HMBC spectrum of adenosine (16) (DMSO-d6, 500MHz) 103
Fig.50. Effect of compounds 1-16 and fractions on glucose uptake in FL83B
cells 108
Fig.51. 1H-NMR spectrum of L-phenylalanine (17) (methanol-d4, 500 MHz) 114
Fig.52. 13C-NMR spectrum of L-phenylalanine (17) (methanol-d4, 125 MHz) 115
Fig.53. 1H-NMR spectrum of uracil (18) (acetone-d6, 500 MHz) 118
Fig.54. 13C-NMR spectrum of uracil (18) (acetone-d6, 125 MHz) 119
Fig.55. COSY spectrum of uracil (18) (acetone-d6, 500 MHz) 120
Fig.56. HMBC spectrum of uracil (18) (acetone-d6, 500 MHz) 121
Fig.57. 1H-NMR spectrum of (R)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid
(19) (DMSO-d6, 500 MHz) 124
Fig.58. 13C-NMR spectrum of (R)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid
(19) (DMSO-d6, 125 MHz) 125
Fig.59. 1H-NMR spectrum of (Z)-2-(4-hydroxybenzyl)butenedioic acid (20)
(methanol-d4, 500 MHz) 128
Fig.60. 13C-NMR spectrum of (Z)-2-(4-hydroxybenzyl)butenedioic acid (20)
(methanol-d4, 125 MHz) 129
Fig.61. HMBC spectrum of (Z)-2-(4-hydroxybenzyl)butenedioic acid (20)
(methanol-d4, 500 MHz) 130
Fig.62. NOESY spectrum of (Z)-2-(4-hydroxybenzyl)butenedioic acid (20)
(methanol-d4, 500 MHz) 131
Fig.63. 1H-NMR spectrum of p-hydroxyphenyl itaconic acid (21) (methanol-d4,
500 MHz) 134
Fig.64. 13C-NMR spectrum of p-hydroxyphenyl itaconic acid (21) (methanol-d4,
125 MHz) 135
Fig.65. HMBC spectrum of p-hydroxyphenyl itaconic acid (21) (methanol-d4
, 500 MHz) 136
Fig.66. NOESY spectrum of p-hydroxyphenyl itaconic acid (21) (methanol-d4
, 500 MHz) 137
Fig.67. 1H-NMR spectrum of vernonioside B2 (22) (methanol-d4, 500 MHz) 144
Fig.68. 13C-NMR spectrum of vernonioside B2 (22) (methanol-d4, 125 MHz) 145
Fig.69. COSY spectrum of vernonioside B2 (22) (methanol-d4, 500 MHz) 146
Fig.70. HMBC spectrum of vernonioside B2 (22) (methanol-d4, 500 MHz) 147
Fig.71. 1H-NMR spectrum of vernonioside B5 (23) (pyridine-d5, 500 MHz) 148
Fig.72. 13C-NMR spectrum of vernonioside B5 (23) (pyridine-d5, 125 MHz) 149
Fig.73. COSY spectrum of vernonioside B5 (23) (pyridine-d5, 500 MHz) 150
Fig.74. HMBC spectrum of vernonioside B5 (23) (pyridine-d5, 500 MHz) 151
Fig.75. ESI-MS spectrum of vernonioside B5 (23) 152
Fig.76. HRESI-MS spectrum of vernonioside B5 (23) 153
Fig.77. 1H-NMR spectrum of chlorogenic acid (24) (methanol-d4, 400 MHz) 159
Fig.78. 13C-NMR spectrum of chlorogenic acid (24) (methanol-d4, 100 MHz) 160
Fig.79. HMQC spectrum of chlorogenic acid (24) (methanol-d4, 400 MHz) 161
Fig.80. COSY spectrum of chlorogenic acid (24) (methanol-d4, 400 MHz) 162
Fig.81. HMBC spectrum of chlorogenic acid (24) (methanol-d4, 400 MHz) 163
Fig.82. 1H-NMR spectrum of 1,3-O-dicaffeoylquinic acid (25) (methanol-d4, 500
MHz) 164
Fig.83. 13C-NMR spectrum of 1,3-O-dicaffeoylquinic acid (25) (methanol-d4, 125
MHz) 165
Fig.84. COSY spectrum of 1,3-O-dicaffeoylquinic acid (25) (methanol-d4, 500
MHz) 166
Fig.85. HMBC spectrum of 1,3-O-dicaffeoylquinic acid (25) (methanol-d4, 500
MHz) 167
Fig.86. ESI-MS spectrum of 1,3-O-dicaffeoylquinic acid (25) 168
Fig.87. 1H-NMR spectrum of methyl 3,5-O-dicaffeoylquinate (26) (methanol-d4,
500 MHz) 169
Fig.88. 13C-NMR spectrum of methyl 3,5-O-dicaffeoylquinate (26) (methanol-d4,
125 MHz) 170
Fig.89. COSY spectrum of methyl 3,5-O-dicaffeoylquinic acid (26) (methanol-d4
, 500 MHz) 171
Fig.90. HMBC spectrum of methyl 3,5-O-dicaffeoylquinic acid (26) (methanol-d4
, 500 MHz) 172
Fig.91. 1H-NMR spectrum of luteolin (27) (acetone-d6+D2O, 500 MHz) 176
Fig.92. 13C-NMR spectrum of luteolin (27) (acetone-d6+D2O, 125 MHz) 177
Fig.93. 1H-NMR spectrum of luteolin-7-O-β-D-glucopyranoside (28) (acetone-d6
+D2O, 500 MHz) 178
Fig.94. 13C-NMR spectrum of luteolin-7-O-β-D-glucopyranoside (28) (acetone-d6
+D2O, 125 MHz) 179
Fig.95. HMBC spectrum of luteolin-7-O-β-D-glucopyranoside (28) (acetone-d6
+D2O, 500 MHz) 180
Fig.96. Effect of compounds 17-28 and fractions on glucose uptake in FL83B
cells 184
Uncategorized References
1.陳玉慧. 假繁縷(Glinus oppositifolius (L.) Aug. DC)全草之化學成分研究(Studies on the Chemical Constituents from Glinus oppositifolius (L.) Aug. DC.). 中國醫藥大學中藥資源學系碩士論文, 2011.
2.Sahakitpichan, P.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T., L-(-)-(N-trans-cinnamoyl)-arginine, an Acylamino Acid from Glinus oppositifolius (L.) Aug. DC. Mol. 2010, 15, (9), 6186-92.
3.Ragasa, C. Y.; Espineli, D. L.; Mandia, E. H.; Don, M.-J.; Shen, C.-C., A New Triterpene from Glinus oppositifolius. Chin. J. Nat. Med. 2012, 10, (4), 284-286.
4.Liu, H.-Y., Flora of Taiwan, Second Edition. 1996; Vol. 2, p 325.
5.Kumar, D.; Shah, V.; Ghosh, R.; Pal, B. C., A New Triterpenoid Saponin from Glinus oppositifolius with α-Glucosidase Inhibitory Activity. Nat. Prod. Res. 2013, 27, (7), 624-9.
6.Diallo, D.; Marston, A.; Terreaux, C.; Toure, Y.; Paulsen, B. S.; Hostettmann, K., Screening of Malian Medicinal Plants for Antifungal, Larvicidal, Molluscicidal, Antioxidant and Radical Scavenging Activities. Phytother. Res. 2001, 15, (5), 401-6.
7.Hoque., N.; Habib., M. R.; Imam., M. Z.; Ahmed., J.; Rana., M. S., Analgesic and Anti-inflammatory Potential of Methanolic Extract of Glinus oppositifolius L. Aust. J. Basic Appl. Sci. 2001, 5, (8), 729-733.
8.Hoque., N.; Imam., M. Z.; Akter., S.; Mazumder., M. E. H.; Hasan., S. M. R.; Ahmed., J.; Rana., M. S., Antioxidant and Antihyperglycemic Activities of Methanolic Extract of Glinus oppositifolius Leaves. J. Appl. Pharm. Sci. 2011, 7, 50-53.
9.Behera., G. M.; B.N., S. K.; Baidya., M.; Panigrahi., G., Antihyperglycemic, Antihyperlipidemic and Antioxidant Activity of Glinus oppositifolius (L.) Aug. DC. Pharmacol. 2010, 3, 915-936.
10.Sahu., S. K.; Das., D.; Tripathy., N. K.; Dinda., S. C.; Kumar., H. K. S., Evaluation of Hypoglycemic Activity of Mollugo pentaphylla and Glinus oppositifolius (L). Rasayan J. Chem. 2012, 5, (1), 57-62.
11.Panigrahi., G.; Mishra., U. S.; Mahapatra., S.; Panda., C.; Pasa., G.; Hati., D. K., Hypoglycemic and Hypolipidemic Activities of Methanol Extract of Glinus oppositifolius. Int. J. Pharm. 2012, 2, (3), 491-497.
12.Scott, L.; Cadman, A.; McMillan, I., Early History of Cainozoic Asteraceae along the Southern African west coast. Rev. Palaeobot. Palyno. 2006, 142, (1-2), 47-52.
13.Robinson., H., Generic and Subtribal Classification of American Vernonieae. Smithsonian Institution Press: Washington, D.C., 1999; p 1-116.
14.Ijeh., I. I.; Ejike., C. E. C. C., Current Perspectives on the Medicinal Potentials of Vernonia amygdalina Del. J. Med. Plant. Res. 2011, 5, (7), 1051-1061.
15.Stevels, J. M. C., Legumes Traditionnels du Cameroun, une Etude Agro-botanique. Agricultural University: Wageningen, 1990; p 262.
16.Igile., G. O.; Oleszek., W.; Jurzysta., M.; Burda., S.; Fafunso., M.; Fasanmade., A. A., Flavonoids from Vernonia Amygdalina and Their Antioxidant Activities. J. Agric. Food Chem. 1994, 42, 2445-2448.
17.Jisaka., M.; Ohigashi., H.; Takegawa., K.; Huffman., M. A.; Koshimizu., K., Antitumoral and Antimicrobial Activities of Bitter Sesquiterpene Lactones of Vernonia amygdalina, a possible medicinal plant used by wild chimpanzees. Biosci. Biotech. Biochem. 1993.
18.Jisaka., M.; Ohigashi., H.; Takegawa., K.; Hirota., M.; Irie., R.; Huffman., M. A.; Koshimizu., K., Steroid Glucosides from Vernonia Amygdalina, A Possible Chimpanzee Medicinal Plant. Phytochemistry 1993.
19.Igile., G.; Oleszek., W.; Jurzysta., M., Vernoniosides D and E, Two Novel Saponins from Vernonia Amygdalina. J. Nat. Prod. 1995.
20.Ayoola., G.; Coker., H.; Adesegun., S.; Adepoju-Bello., A.; Obaweya., K.; Ezennia., E.; Atangbayil., T., Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Trop. J. Pharm. Res. 2008, 7, (3), 1019-1024.
21.Erasto., P.; Grierson., D. S.; Afolayan., A. J., Antioxidant Constituents in Vernonia amygdalina. Leaves. Pharm. Biol. 2007, 45, (3), 195-199.
22.Hakizamungu., E.; Puyvelde., L. V.; Wéry., M., Screening of Rwandese Medicinal Plants for Anti-trichomonas Activity. J. Ethnopharmacol. 1992, 36, (2), 143-146.
23.Otshudi., A. L.; Vercruysse., A.; Foriers, A., Contribution to the Ethnobotanical, Phytochemical and Pharmacological Studies of Traditionally Used Medicinal Plants in the Treatment of Dysentery and Diarrhea in Lomela Area, Democratic Republic of Congo (DRC). J. Ethnopharmacol. 2000, 71, 411-423.
24.Moundipa., P. F.; Flore., K. G. M.; Bilong., C. F.; Bruchhaus., I., In Vitro Amoebicidal Activity of Some Medicinal Plants of the Bamun region (Cameroon). Afr. J. Tradit. Complement Altern. Med. 2005, 2, (2), 113-121.
25.Osinubi., A. A. A., Effects of Vernonia amygdalina and Chlorpropamide on Blood Glucose. Med. J. Islamic World Acad. Sci. 2007, 16, (3), 115-119.
26.Okolie., U. V.; Okeke., C. E.; Oli., J. M.; Ehiemere., I. O., Hypoglycemic Indices of Vernonia amygdalina on Postprandial Blood Glucose Concentration of Healthy Humans. Afr. J. Biochem. 2008, 7, (24), 4581-4585.
27.Taiwo., I. A.; Odeigah., P. G. C.; Ogunkanmi., L. A., The Glycaemic Effects of Vernonia amygdalina and V. tenoreana with Tolbutamide in Rats and the Implications for the Treatment of Diabetes Mellitus. J. Sci. Res. Dev. 2009, 11, 122-113.
28.Ebong., P. E.; Atangwho., I. J.; Eyong., E. U.; Egbung., G. E., The Antidiabetic Efficacy of Combined Extracts from Two Continental Plants: Azadirachta indica (A. Juss) (Neem) and Vernonia amygdalina (Del.) (African Bitter Leaf). Am. J. Biochem. Biotechnol. 2008, 4, (3), 239-244.
29.Adaramoye., O. A.; Akintayo., O.; Achem., J.; Fafunso., M. A., Lipid-lowering Effects of Methanolic Extract of Vernonia amygdalina Leaves in Rats Fed on High Cholesterol Diet. Vasc. Health. Risk. Manag. 2008, 4, (1), 235-241.
30.Ekpo, a.; A., O.; Ikpeme, A. O.; J., E., Studies on Some Biochemical Effects of Vernonia amygdalina in Rats. Asian J. Biochem. 2007, 2, (3), 193-197.
31.Howard., C. B.; Izevbigie., E. B.; Opata., M. M., Inhibition of Paclitaxel-resistant MCF-7 RAg Cell Growth by Vernonia amygdalina Extract. Clin. Cancer Res. 2006, Sep 12-15, Abstract B49.
32.Opata., M. M.; Izevbigie., E. B., Aqueous Vernomia amygdalina Extracts Alter MCF-7 Cell Membrane Permeability and Efflux. Int. J. Environ. Res. Public Health 2006, 3, (2), 174-179.
33.Khalafalla., M. M.; Abdellatef., E.; Daffalla., H. M.; Nassrallah., A. A.; Aboul-Enein., K. M.; Lightfoot., D. A.; Cocchetto., A.; El-Shemy., H. A., Antileukemiaactivity from Root Cultures of Vernonia amygdalina. J. Med. Plant. Res. 2009, 3, (8), 556-562.
34.Association, A. D., Standards of Medical Care in Diabetes-2015. Diabetes Care 2015 2015, 38, S8-S46.
35.Liu, M.; Yang, S.; Jin, L.; Hu, D.; Wu, Z.; Yang, S., Chemical Constituents of the Ethyl Acetate Extract of Belamcanda chinensis (L.) DC Roots and Their Antitumor Activities. Mol. 2012, 17, (5), 6156-6169.
36.Awaad, A. S.; Maitland, D. J.; Soliman, G. A., Hepatoprotective Activity of Schouwia thebica webb. Bioorg. Med. Chem. Lett. 2006, 16, (17), 4624-4628.
37.Sikorska., M.; Matlawska., I., Kaempferol, Isorhamnetin and Their Glycosides in the Flowers of Asclepias syriaca L. Pharm. Soc. 2001, 58, (4), 269-272.
38.Noccioli., C.; Luciardi., L.; Barsellini., S.; Favro., C.; Bertoli., A.; Bader., A.; Loi., M. C.; Pistelli., L., Flavonoids from Two Italian Genista Species: Genista cilentina and Genista sulcitana. Chem. Nat. Compd. 2012, 48, (4), 672-673.
39.Ren., L. X.; He., L. Y.; Juan., H.; Yan., P. L.; De., W. X.; Nan., D. R.; Shi., Z. Q., Phenolic Constituents and Antioxidant Activity of Eleochairs tuberosa Peels. Nat. Prod. Res. 2013, 25, 1615-1620.
40.Zhou, X. J.; Yan, L. L.; Yin, P. P.; Shi, L. L.; Zhang, J. H.; Liu, Y. J.; Ma, C., Structural Characterisation and Antioxidant Activity Evaluation of Phenolic Compounds from Cold-pressed Perilla frutescens var. Arguta Seed Flour. Food Chem. 2014, 164, 150-157.
41.Liao, C. R.; Kuo, Y. H.; Ho, Y. L.; Wang, C. Y.; Yang, C. S.; Lin, C. W.; Chang, Y. S., Studies on Cytotoxic Constituents from the Leaves of Elaeagnus oldhamii Maxim. in Non-small Cell Lung Cancer A549 Cells. Mol. 2014, 19, (7), 9515-9534.
42.Villano, R.; Acocella, M. R.; Scettri, A., Fe3O4 Nanoparticles/Ethyl acetoacetate System for the Efficient Catalytic Oxidation of Aldehydes to Carboxylic Acids. Tetrahedron Lett. 2014, 55, (15), 2442-2445.
43.Kametani, S.; Kojima-Yuasa, A.; Kikuzaki, H.; Kennedy, D. O.; Honzawa, M.; Matsui-Yuasa, I., Chemical Constituents of Cape Aloe and Their Synergistic Growth-inhibiting Effect on Ehrlich Ascites Tumor Cells. Biosci. Biotechnol., Biochem. 2007, 71, (5), 1220-1229.
44.González-Calderón., D.; González-González., C. A.; Fuentes-Bentez., A.; ez., E. C.-Y. n.; Corona-Becerril., D.; González-Romero., C., A Novel Chemoselective Cleavage of (tert-Butyl)(dimethyl)silyl (TBS) Ethers Catalyzed by Ce(SO4)2 •4 H2O. Helv. Chim. Acta. 2014, 97, (7), 965-972.
45.Alves., J. S.; Castro., J. C. M. d.; Freire., M. O.; da-Cunha., E. V. L. a.; Barbosa-Filho., J. M.; Silva., M. S. d., Complete Assignment of the 1H and 13C NMR Spectra of Four Triterpenes of the Ursane, Artane, Lupane and Friedelane Groups. Magn. Reson. Chem. 2000, 38, 201-206.
46.Hamed., A. I.; Piacente., S.; Autore., G. p.; Marzocco., S.; Pizza., C.; Oleszek., W., Antiproliferative Hopane and Oleanane Glycosides from the Roots of Glinus lotoides. Planta Med. 2005, 71, 554-560.
47.Sahu., N. P.; Koike., K.; Banerjee., S.; Achari., B.; Nikaido., T., Triterpenoid Saponins from Mollugo spergula. Phytochemistry 2001, 58, 1177-1182.
48.Estork, D. M.; Gusmao, D. F.; Paciencia, M. L.; Diaz, I. E.; Varella, A. D.; Younes, R. N.; Reis, L. F.; Montero, E. F.; Bernardi, M. M.; Suffredini, I. B., First Chemical Evaluation and Toxicity of Casinga-cheirosa to Balb-c Male Mice. Mol. 2014, 19, (4), 3973-3987.
49.Rauwal., H.-W.; Sauter., M.; Schilcher., H., A 24β-Ethyl-??7-Steryl Glucopyranoside from Cucurbita pepo Seeds. Phytochemistry 1985, 24, (11), 2746-2748.
50.Moyroud., E.; Strazewski., P., L-Ribonucleosides from L-Xylose. Tetrahedron 1999, 55, 1277-1284.
51.Lakshminarayana, N.; Rajendra Prasad, Y.; Gharat, L.; Thomas, A.; Ravikumar, P.; Narayanan, S.; Srinivasan, C. V.; Gopalan, B., Synthesis and Evaluation of Some Novel Isochroman Carboxylic Acid Derivatives as Potential Anti-diabetic Agents. Eur J Med Chem 2009, 44, (8), 3147-3157.
52.Ruman, T.; Jarmula, A.; Rode, W., The Aromaticity of 5,6-dihydroborauracil, Borauracil and Benzoborauracil Systems. Bioorg. Chem. 2010, 38, (5), 242-245.
53.Yahara., S.; Uda., N.; Yoshio., E.; Yae., E., Steroidal Alkaloid Glycosides from Tomato (Lycopersicon esculentum). J. Nat. Prod. 2004, 67, (3), 500-502.
54.Gafner., S.; Wolfender., J.-L.; Hostettmann., K., Phenols, Acetylenes, and Sesquiterpene Lactones from Lnulanthera nuda. Helv. Chim. Acta. 1998, 81, 2062-2071.
55.Shechter., Y.; Yaish., P.; Chorev., M.; Gilon., C.; Braun., S.; Levitzki., A., Inhibition of Insulin-dependent Lipogenesis and Anti-lipolysis by Protein Tyrosine Kinase Inhibitors. The EMBO Journal 1989, 8, (6), 1671-1676.
56.Jisaka., M.; Ohigashi., H.; Takegawa., K.; Hirota., M.; Irie., R.; Huffman, M. A.; Koshimizu., K., Steroid Glucosides From Vernonia amygdalina, a Possible Chimpanzee Medicinal Plant. Phytochemistry 1993, 34, (2), 409-413.
57.Satake., T.; Kamiya., K.; An., Y.; Oishi., T.; Yamamoto., J., The Anti-thrombotic Active Constituents from Centella asiatica. Biol. Pharm. Bull. 2007, 30, (5), 935-940.
58.Zhu., X.-F.; Zhang., H.-X.; Lo., R., Three Di-O-caffeoylquinic Acid Derivatives from the Heads of Cynara scolymus L. Nat. Prod. Res. 2009, 23, (6), 527-532.
59.Hu, T.; He, X. W.; Jiang, J. G., Functional Analyses on Antioxidant, Anti-inflammatory, and Antiproliferative Effects of Extracts and Compounds from Ilex latifolia Thunb., a Chinese Bitter Tea. J. Agric. Food. Chem. 2014, 62, (34), 8608-8615.
60.Lin, Y. P.; Chen, T. Y.; Tseng, H. W.; Lee, M. H.; Chen, S. T., Neural Cell Protective Compounds Isolated from Phoenix hanceana var. Formosana. Phytochemistry 2009, 70, (9), 1173-1181.
61.謝欣樺. 牛樟芝與扁桃斑鳩菊活性成分探討 (Studies on the Constituents of Antrodia camphorata and Verninia amygdalina Delile.). 臺北醫學大學生藥學研究所碩士論文, 2003.
62.Bhattacharya, S.; Christensen, K. B.; Olsen, L. C.; Christensen, L. P.; Grevsen, K.; Faergeman, N. J.; Kristiansen, K.; Young, J. F.; Oksbjerg, N., Bioactive Components from Flowers of Sambucus nigra L. Increase Glucose Uptake in Primary Porcine Myotube Cultures and Reduce Fat Accumulation in Caenorhabditis elegans. J Agric Food Chem 2013, 61, (46), 11033-11040.
63.郭蓓蓓. 新疆雪蓮與蕨化學成分之研究 (Studies on the Chemical Constituents of Saussurea involucrate Kar. et Kir and Pteridium aquilinum (L.) Kuhn subsp. Latiusculum (Desv. ) Underw.). 臺北醫學大學藥學系碩士論文, 2008.
64.Cheng, F. C.; Shen, S. C.; Wu, J. S., Effect of Guava (Psidium guajava L.) Leaf Extract on Glucose Uptake in Rat Hepatocytes. J. Food Sci. 2009, 74, (5), H132-138.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔