(3.235.11.178) 您好!臺灣時間:2021/02/26 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝曾安
研究生(外文):Zeng - An Xie
論文名稱:新式表面處理技術應用於醫用不銹鋼金屬之物化性質分析
論文名稱(外文):Study of Microstructural Characteristics and BiomechanicalBehaviors on Stainless Steel using Novel Surface TreatmentTechnology
指導教授:陳錦松陳錦松引用關係
口試委員:洪景明林宏明
口試日期:2015-07-03
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫療器材產業碩士專班
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:鈦金氧化層醫用不銹鋼動物實驗
外文關鍵詞:animal modelsurface treatmentbiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
有鑒於全球邁向高齡化人口之發展趨勢,後續將會帶來醫療需求增加;又如國家經濟開始發展,國民所得提高相對地對於醫療品質要求也會逐漸升高,因此在醫療器材方面來說,其產值勢必會提升高。採用表面處理技術來提高材料的硬度、耐磨耗等特性,已經成為一種重要的商業加工方法,使的經表面處理適用金屬越
越廣泛,從早期的鐵系金屬到最近的鈦、鈦合金及鋁、鋁合金等皆可。各式表面處理過後之材料表層氧化層組織安定且緻密,且其耐磨耗、耐疲勞等特性均佳,在工業上用途甚為廣泛,如機器、刀具、工具及模型等。硬質鍍膜除了硬度非常高以外也必須具有低摩擦係數及優越的電絕緣性和高熱傳導性、耐酸鹼性、化學鈍性、光穿透性、生物相容性、光滑及耐磨耗性等,因為有這些特性才能使鍍膜在機械、電子、半導體等工業應用日益的廣泛。就國內而言,對於牙科醫療器材之應用還不夠成熟,因此本研究的目的在於應用噴砂及酸蝕後之醫用不銹鋼,使其表面產生一層奈米氧化層,藉由血液試驗與動物實驗探討表面處理技術對於醫用不銹鋼之影響。
The aim of the present study was to investigate the biocompatibility properties on the surface of stainless steel with novel surface modification. The treated layer of the substrate is a very important factor on the surface of the medical devices. The surfaces of these samples were investigated the biocompatibility properties using the animal examinations. Data indicated that the biocompatibility property increased significantly when substrates with surface treatments were used. Surface treatment created a potential function of biocompatibility compared with control groups. The present study reveals that the novel thin film on the substrates is an effective means of improving the performance of biocompatibility effect in the medical devices.
However, further tests in the clinical trial have to evaluate to confirm the effect and safety of promising findings in the surface treatments.
中文摘要.....................................................................................................................Ⅰ
Abstract......................................................................................................................Ⅱ
Contents..................................................................................................................... Ⅲ
Figure captions............................................................................................................ IV
第一章 前言.................................................................................................................. 5
第二章 文獻回顧.......................................................................................................... 6
第三章 實驗方法.......................................................................................................... 9
血液試驗檢測........................................................................................................ 9
動物實驗評估...................................................................................................... 10
第四章 結果與討論.................................................................................................... 11
血液試驗檢測...................................................................................................... 11
動物實驗評估...................................................................................................... 13
第五章 結論................................................................................................................ 15
參考文獻...................................................................................................................... 16
[1] Rahaman MN, Boiteux Y, DeJonghe LC. Surface characterization of silicon nitride and silicon carbide
powders. Journal Name: Am Ceram Soc Bull; (United States); Journal Volume: 65:8 1986:Medium: X;
Size: Pages: 1171‐6.
[2] Xu Y, Chung DDL. Increasing the thermal conductivity of boron nitride and aluminum nitride
particle epoxy‐matrix composites by particle surface treatments. Composite Interfaces 2000;7:243‐56.
[3] Bill RC. Selected fretting‐wear‐resistant coatings for Ti‐6%Al‐4%V alloy. Wear 1985;106:283‐301.
[4] Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF. The barrier discharge:
basic properties and applications to surface treatment. Vacuum 2003;71:417‐36.
[5] Li‐Te Y, Jung‐Chuan C, Wen‐Yaw C, Tai‐Ping S, Shen‐Ken H. Characteristics of silicon nitride after
O/sub 2/ plasma surface treatment for pH‐ISFET applications. Biomedical Engineering, IEEE
Transactions on 2001;48:340‐4.
[6] Xu Y, Chung DDL, Mroz C. Thermally conducting aluminum nitride polymer‐matrix composites.
Composites Part A: Applied Science and Manufacturing 2001;32:1749‐57.
[7] Asai H, Iwase N, Suga T. Influence of ceramic surface treatment on peel‐off strength between
aluminum nitride and epoxy‐modified polyaminobismaleimide adhesive. Advanced Packaging, IEEE
Transactions on 2001;24:104‐12.
[8] Sato T, Ohata K, Asahi N, Ono Y, Oka Y, Hashimoto I, et al. Surface treatment of aluminum alloy at
room temperature with titanium‐nitride films by dynamic mixing. Nuclear Instruments and Methods
in Physics Research Section B: Beam Interactions with Materials and Atoms 1987;19–20, Part 2:644‐7.
[9] Baek W‐S, Kwon S‐C, Lee S‐R, Rha J‐J, Nam K‐S, Lee J‐Y. A study of the interfacial structure between
the TiN film and the iron nitride layer in a duplex plasma surface treatment. Surface and Coatings
Technology 1999;114:94‐100.
[10] Yue TM, Yu JK, Mei Z, Man HC. Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion
resistance enhancement. Materials Letters 2002;52:206‐12.
[11] Rolland A, Richard J, Kleider JP, Mencaraglia D. Electrical Properties of Amorphous Silicon
Transistors and MIS‐Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations.
Journal of The Electrochemical Society 1993;140:3679‐83.
[12] György E, Pérez del Pino A, Serra P, Morenza JL. Surface nitridation of titanium by pulsed Nd:YAG
laser irradiation. Applied Surface Science 2002;186:130‐4.
[13] Jang J‐S, Park S‐J, Seong T‐Y. Formation of low resistance Pt ohmic contacts to p‐type GaN using
two‐step surface treatment. Journal of Vacuum Science & Technology B 1999;17:2667‐70.
[14] Lee H‐Y, Pan K‐H, Lin C‐C, Chang Y‐C, Kao F‐J, Lee C‐T. Current spreading of III‐nitride light‐emitting
diodes using plasma treatment. Journal of Vacuum Science & Technology B 2007;25:1280‐3.
[15] Starosvetsky D, Gotman I. Corrosion behavior of titanium nitride coated Ni–Ti shape memory
surgical alloy. Biomaterials 2001;22:1853‐9.
[16] Shigematsu I, Nakamura M, Saitou N, Shimojima K. Surface treatment of AZ91D magnesium alloy
17
by aluminum diffusion coating. Journal of Materials Science Letters 2000;19:473‐5.
[17] Vetter J, Barbezat G, Crummenauer J, Avissar J. Surface treatment selections for automotive
applications. Surface and Coatings Technology 2005;200:1962‐8.
[18] Navinšek B, Panjan P, Milošev I. PVD coatings as an environmentally clean alternative to
electroplating and electroless processes. Surface and Coatings Technology 1999;116–119:476‐87.
[19] Endrino JL, Fox‐Rabinovich GS, Gey C. Hard AlTiN, AlCrN PVD coatings for machining of austenitic
stainless steel. Surface and Coatings Technology 2006;200:6840‐5.
[20] Hoche H, Scheerer H, Probst D, Broszeit E, Berger C. Development of a plasma surface treatment
for magnesium alloys to ensure sufficient wear and corrosion resistance. Surface and Coatings
Technology 2003;174–175:1018‐23.
[21] Tönshoff HK, Mohlfeld A. Surface treatment of cutting tool substrates. International Journal of
Machine Tools and Manufacture 1998;38:469‐76.
[22] Lugscheider E, Bobzin K. The influence on surface free energy of PVD‐coatings. Surface and
Coatings Technology 2001;142–144:755‐60.
[23] Lau H, Leyens C, Schulz U, Friedrich C. Influence of bondcoat pre‐treatment and surface topology
on the lifetime of EB‐PVD TBCs. Surface and Coatings Technology 2003;165:217‐23.
[24] Bouzakis KD, Michailidis N, Hadjiyiannis S, Efstathiou K, Pavlidou E, Erkens G, et al. Improvement
of PVD coated inserts cutting performance, through appropriate mechanical treatments of substrate
and coating surface. Surface and Coatings Technology 2001;146–147:443‐50.
[25] Smolik J, Walkowicz J, Tacikowski J. Influence of the structure of the composite: ‘nitrided
layer/PVD coating’ on the durability of tools for hot working. Surface and Coatings Technology
2000;125:134‐40.
[26] Baránková H, Bárdoš L. Hollow cathode plasma sources for large area surface treatment. Surface
and Coatings Technology 2001;146–147:486‐90.
[1] Rahaman MN, Boiteux Y, DeJonghe LC. Surface characterization of silicon nitride and silicon
carbide powders. Journal Name: Am Ceram Soc Bull; (United States); Journal Volume: 65:8
1986:Medium: X; Size: Pages: 1171-6.
[2] Xu Y, Chung DDL. Increasing the thermal conductivity of boron nitride and aluminum nitride
particle epoxy-matrix composites by particle surface treatments. Composite Interfaces 2000;7:243-56.
[3] Bill RC. Selected fretting-wear-resistant coatings for Ti-6%Al-4%V alloy. Wear 1985;106:283-301.
[4] Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF. The barrier discharge:
basic properties and applications to surface treatment. Vacuum 2003;71:417-36.
[5] Li-Te Y, Jung-Chuan C, Wen-Yaw C, Tai-Ping S, Shen-Ken H. Characteristics of silicon nitride
after O/sub 2/ plasma surface treatment for pH-ISFET applications. Biomedical Engineering, IEEE
Transactions on 2001;48:340-4.
[6] Xu Y, Chung DDL, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites.
Composites Part A: Applied Science and Manufacturing 2001;32:1749-57.
[7] Asai H, Iwase N, Suga T. Influence of ceramic surface treatment on peel-off strength between
aluminum nitride and epoxy-modified polyaminobismaleimide adhesive. Advanced Packaging, IEEE
Transactions on 2001;24:104-12.
[8] Sato T, Ohata K, Asahi N, Ono Y, Oka Y, Hashimoto I, et al. Surface treatment of aluminum alloy at
room temperature with titanium-nitride films by dynamic mixing. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 1987;19–20, Part 2:644-7.
[9] Baek W-S, Kwon S-C, Lee S-R, Rha J-J, Nam K-S, Lee J-Y. A study of the interfacial structure
between the TiN film and the iron nitride layer in a duplex plasma surface treatment. Surface and
Coatings Technology 1999;114:94-100.
[10] Yue TM, Yu JK, Mei Z, Man HC. Excimer laser surface treatment of Ti–6Al–4V alloy for
corrosion resistance enhancement. Materials Letters 2002;52:206-12.
[11] Rolland A, Richard J, Kleider JP, Mencaraglia D. Electrical Properties of Amorphous Silicon
Transistors and MISDevices:
Comparative Study of Top Nitride and Bottom Nitride Configurations.
Journal of The Electrochemical Society 1993;140:3679-83.
[12] György E, Pérez del Pino A, Serra P, Morenza JL. Surface nitridation of titanium by pulsed
Nd:YAG laser irradiation. Applied Surface Science 2002;186:130-4.
[13] Jang J-S, Park S-J, Seong T-Y. Formation of low resistance Pt ohmic contacts to p-type GaN using
two-step surface treatment. Journal of Vacuum Science & Technology B 1999;17:2667-70.
[14] Lee H-Y, Pan K-H, Lin C-C, Chang Y-C, Kao F-J, Lee C-T. Current spreading of III-nitride
light-emitting diodes using plasma treatment. Journal of Vacuum Science & Technology B
2007;25:1280-3.
[15] Starosvetsky D, Gotman I. Corrosion behavior of titanium nitride coated Ni–Ti shape memory
surgical alloy. Biomaterials 2001;22:1853-9.
[16] Shigematsu I, Nakamura M, Saitou N, Shimojima K. Surface treatment of AZ91D magnesium
alloy by aluminum diffusion coating. Journal of Materials Science Letters 2000;19:473-5.
[17] Vetter J, Barbezat G, Crummenauer J, Avissar J. Surface treatment selections for automotive
applications. Surface and Coatings Technology 2005;200:1962-8.
[18] Navinšek B, Panjan P, Milošev I. PVD coatings as an environmentally clean alternative to
electroplating and electroless processes. Surface and Coatings Technology 1999;116–119:476-87.
[19] Endrino JL, Fox-Rabinovich GS, Gey C. Hard AlTiN, AlCrN PVD coatings for machining of
austenitic stainless steel. Surface and Coatings Technology 2006;200:6840-5.
[20] Hoche H, Scheerer H, Probst D, Broszeit E, Berger C. Development of a plasma surface treatment
for magnesium alloys to ensure sufficient wear and corrosion resistance. Surface and Coatings
Technology 2003;174–175:1018-23.
[21] Tönshoff HK, Mohlfeld A. Surface treatment of cutting tool substrates. International Journal of
Machine Tools and Manufacture 1998;38:469-76.
[22] Lugscheider E, Bobzin K. The influence on surface free energy of PVD-coatings. Surface and
Coatings Technology 2001;142–144:755-60.
19
[23] Lau H, Leyens C, Schulz U, Friedrich C. Influence of bondcoat pre-treatment and surface
topology on the lifetime of EB-PVD TBCs. Surface and Coatings Technology 2003;165:217-23.
[24] Bouzakis KD, Michailidis N, Hadjiyiannis S, Efstathiou K, Pavlidou E, Erkens G, et al.
Improvement of PVD coated inserts cutting performance, through appropriate mechanical treatments of
substrate and coating surface. Surface and Coatings Technology 2001;146–147:443-50.
[25] Smolik J, Walkowicz J, Tacikowski J. Influence of the structure of the composite: ‘nitrided
layer/PVD coating’ on the durability of tools for hot working. Surface and Coatings Technology
2000;125:134-40.
[26] Baránková H, Bárdoš L. Hollow cathode plasma sources for large area surface treatment. Surface
and Coatings Technology 2001;146–147:486-90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔