跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳偉智
研究生(外文):Wei-Chih Chen
論文名稱:在預浸漬鉬酸銨溶液後以混酸陽極處理之鋁材上製備超疏水表面
論文名稱(外文):Preparation of Superhydrophobic Surface on Aluminum Anodized in Mixed Acid after Pre-immersing in Ammonium Molybdate Acid
指導教授:施幸祥
指導教授(外文):Hsing-Hsiang Shih
口試委員:施幸祥
口試委員(外文):Hsing-Hsiang Shih
口試日期:2015-07-30
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:100
中文關鍵詞:超疏水十四酸混酸
外文關鍵詞:superhydrobicMyristic acidMixing acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在於探討於鋁材上仿效蓮花效應,製備具超疏水性的表面。蓮花效應是仿生學的一種,是藉模仿生物的特殊性質作為研究之科學,蓮花效應即是模仿蓮葉表面不會被液體濕潤的疏水性及自潔性。
超疏水性表面接觸角常因經過長時間而導致接觸角下降,本實驗利用表面改質劑鉬酸銨,增加一道鋁材預浸漬處理的步驟,使其產生一層水氧化鉬皮膜在鋁材之上,使陽極處理過程中可緩慢且穩定的生成較緻密且硬度較高的氧化皮膜,陽極處理中使用硫酸混合磺基水楊酸之電解液,可提升鋁材表面的物理性質,如抗腐蝕性,強度。
相較於未預浸漬以純硫酸為電解液的鋁片,有經預浸漬後混酸為電解液的鋁片,其接觸角高於前者,達到158°,而硬度方面提升約100~150Hv,在耐腐蝕性上混酸預浸漬之鋁片也優於其他試片,具耐腐蝕的特性,長效性方面經過270天後有預浸漬的鋁片水接觸角平均下降約4%,優於無預浸漬的8%。
This research aims at the investigation of preparing the superhydrophobic surfaces on the aluminum materials by simulating the lotus effect. Bionics is a science research by simulate the special biological nature. Lotus effect is a kind of bionics. Lotus surface has the hydrophobicity and self-cleaning of which are not wetted by liquid.
The contact angle of superhydrophobic surface is often decline after a long time. In this experiment , using the surface modifier of ammonium molybdate in a pre-immersing step of aluminum to create a molybdenum oxide film which grew on the aluminum surface, it can make the anodic film grows slowly and steadily to build a more dense and hard oxide film. Besides, in the anodic process, a mixing solution of sulfosalicylic acid and sulfuric acid is used to improve the physical properties of anodic film, such as, corrosion resistance and strength.
The contact angle of the superhydrophobic film produced from the process with the pre-immersing and mixed acid is better than the convention method, achieves 158°. And, the hardness increases significantly an average value of 100 ~ 150 Hv. The corrosion resistance is also better than others. After 270 days, the aluminum's contact angle decrease the average 4% preparing with pre-immersing, better than the aluminum's contact angle decrease the average 8% preparing without pre-immersing.
致謝i
中文摘要ii
英文摘要iv
表目錄ix
圖目錄x
第一章 緒論1
1.1前言1
1.2研究目標3
第二章 理論基礎4
2.1 超疏水4
2.1.1超疏水表面理論4
2.1.2 仿生學5
2.1.3 楊氏方程式(Young’s Equation) 5
2.1.4 WENZEL和CASSIE THEORY8
2.1.5濕潤性(WETTING)10
2.1.6 遲滯角(HYSTERESIS) 10
2.1.7 濕潤接觸面積(WETTING AREA) 11
2.1.8表面自由能(SURFACE FREE ENERGY) 12
2.2 鋁材的前處理14
2.2.1鹼洗14
2.2.2 酸洗15
2.2.3 去離子水與超音波震盪清洗15
2.3 鋁蝕刻15
2.3.1鋁蝕刻原理15
2.3.2蝕刻液15
2.3.3鋁蝕刻應用17
2.4 鋁的陽極氧化18
2.4.1 陽極氧化膜的結構19
2.4.2陽極氧化的反應機制23
2.4.3陽極氧化鋁形成之化學反應25
2.4.4 陽極處理溶液27
2.5自組裝29
2.5.1分子自組裝的原理及特點29
2.5.1自組裝單層膜(Self-Assembled Monolayers, SAMs) 31
2.5.2自組裝單層膜(SAMs)的成膜機制33
2.6 表面粗糙度33
2.7 腐蝕試驗37
第三章實驗40
3.1 材料及樣品製備40
3.2實驗裝置及儀器42
3.3 實驗程序43
3.3.1前處理43
3.3.2化學蝕刻44
3.3.3陽極處理45
3.3.4預浸漬處理45
3.3.5單分子自組裝46
3.4 量測46
3.4.1 膜厚46
3.4.2 表面粗糙度47
3.4.3 角接觸角測量47
3.4.4 場發射掃描式電子顯微鏡FE-SEM 48
3.4.5 膜硬度48
3.4.6 超疏水長效性測定50
3.4.7腐蝕試驗50
第四章結果與討論51
4.1 膜厚51
4.2 表面粗糙度55
4.3 接觸角59
4.4 硬度78
4.5 SEM 82
4.6 長效性87
4.7腐蝕試驗94
第五章結論97
參考文獻98

表目錄
Table.2.1 Wettability of Dropletsat different anglesonthewetsurfaceconditions 7
Table.2.2 The formula applied to the surface free energy 13
Table.2.3 Typical test liquid 14
Table.4.1 The comparison of the film thickness from different anodic reatment processes without pre-immersing 52
Table.4.2 The comparison of the film thickness from different anodic treatment processes with pre-immersing 53
Table.4.3 The comparison of the roughness of the film from different anodic treatment processes without pre-immersing 56
Table.4.4 The comparison of the roughness of the film from different anodic treatment processes with pre-immersing 57
Table.4.5 Comparison of the contact angle of the film from different anodic treatment processes without pre-immersing 60
Table.4.6 Comparison of the contact angle of the film from different anodic treatment processes with pre-immersing 61
Table.4.7 Comparison of hardness from different anodic treatment processes without pre-immersing 79
Table.4.8 Comparison of hardness from different anodic treatment processes with pre-immersing 80
Table.4.9Comparison of long-term stability from different anodic treatment processes with pre-immersing 88
Table.4.10 Comparison of long-term stability from different anodic treatment processes without pre-immersing 89
圖目錄
Fig.2.1 Solid and Liquid Contact Angle 6
Fig.2.2 Wetting Area 7
Fig.2.3 Wenzel State and Cassie State 8
Fig.2. 4 Advancing Angle and Receding Angle Schematic Diagram 11
Fig.2.5 On the surface of the liquid in the rough state 12
Fig.2.6 The two principal types of coating 19
Fig.2.7 The closed-packed hexagonal cell structure 21
Fig.2.8 Ideal schematic sectional image of a porous anodic film on Aluminum 21
Fig.2.9 Anodic aluminum oxide film at (a) constant current (b) constant
voltage 22
Fig.2.10 Anode treatmentelectric field distribution 25
Fig.2.11 Migration of ions at metal-electrolyte interface to form anodic
film. 27
Fig.2.12 Driven fashion of self-assembly 30
Fig.2.13 Schematic diagram of the formation of the structure of SAMs 31
Fig.2.14 Schematic description of assembly by myristic acid on thesubstrate surface 33
Fig.2.15 surface profile 34
Fig.2.16 A.B Center line average roughness 35
Fig.2.17 Maximum height roughness 36
Fig.2.18 Ten point height of irregularities 37
Fig.2.19 Anodic and cathodic polarization curves that represent anodic
reactions or cathodic reactions39
Fig.3.1 Diagram of anodizing apparatus42
Fig.3.2 Schematic of assembly by myristic acid on the substrate surface 46
Fig.3.3 Diagram of Electronic Thickness Tester47
Fig.3.4 Diagram of Contact Angle Meter 48
Fig.3.5 Indented area indented by the indenter for measuring the film hardness49
Fig. 4.1 The comparison of the film thickness from different anodic treatment processes 54
Fig.4.2 Relationship between the roughness and the contact angle for
different anodic treatment processes58
Fig.4.3 The contact angle from electrolyte of sulfuric acid and 1A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min 62
Fig.4.4 The contact angle from electrolyte of sulfuric acid and 2A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min 63
Fig.4.5 The contact angle from electrolyte of sulfuric acid and 3A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min64
Fig.4.6 The contact angle from electrolyte of sulfuric acid and 4A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min. (d)40min65
Fig.4.7 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 1A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min66
Fig.4.8 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 2A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min67
Fig.4.9 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 3A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min 68
Fig.4.10 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 4A/dm2 anodizing current density without pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min. (d)40min69
Fig.4.11 The contact angle from electrolyte of sulfuric acid and 1A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min70
Fig.4.12 The contact angle from electrolyte of sulfuric acid and 2A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min71
Fig.4.13 The contact angle from electrolyte of sulfuric acid and 3A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min 72
Fig.4.14 The contact angle from electrolyte of sulfuric acid and 4A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min 73
Fig.4.15 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 1A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min74
Fig.4.16 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 2A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min75
Fig.4.17 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 3A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min76
Fig.4.18 The contact angle from electrolyte of sulfuric acid and sulfosalicylic acid and 4A/dm2 anodizing current density with pre-immersing with various anodizing time. (a)10min.(b)20min. (C)30min(d)40min77
Fig.4.19 The comparison of the film hardness from different anodic treatment processes81
Fig.4.20 The SEM micrograph of anodizing current density 3A/dm2 and anodic treatment time 30 min from electrolyte of sulfuric acid without pre-immersing with different photography magnification83
Fig.4.21 The SEM micrograph of anodizing current density 3A/dm2 and anodic treatment time 30 min from electrolyte of sulfuric acid and sulfosalicylic acid without pre-immersing with different photography magnification84
Fig.4.22 The SEM micrograph of anodizing current density 3A/dm2 and anodic treatment time 30 min from electrolyte of sulfuric acid with pre-immersing with different photography magnification85
Fig.4.23 The SEM micrograph of anodizing current density 3A/dm2 and anodic treatment time 30 min from electrolyte of sulfuric acid and sulfosalicylic acid with pre-immersing with different photography magnification86
Fig.4.24 The long-term stability of anodizing current density 1A/dm2 from electrolyte of sulfuric acid without pre-immersing90
Fig.4.25 The long-term stability of anodizing current density 2A/dm2 from electrolyte of sulfuric acid without pre-immersing90
Fig.4.26 The long-term stability of anodizing current density 3A/dm2 from electrolyte of sulfuric acid without pre-immersing90
Fig.4.27 The long-term stability of anodizing current density 1A/dm2 from electrolyte of sulfuric acid and sulfosalicylic acid without pre-immersing91
Fig.4.28 The long-term stability of anodizing current density 2A/dm2 from electrolyte of sulfuric acid and sulfosalicylic acid without pre-immersing91
Fig.4.29 The long-term stability of anodizing current density 3A/dm2 from electrolyte of sulfuric acid and sulfosalicylic acid without pre-immersing91
Fig.4.30 The long-term stability of anodizing current density 1A/dm2 from electrolyte of sulfuric acid with pre-immersing92
Fig.4.31 The long-term stability of anodizing current density 2A/dm2 from electrolyte of sulfuric acid with pre-immersing92
Fig.4.32 The long-term stability of anodizing current density 3A/dm2 from electrolyte of sulfuric acid with pre-immersing92
Fig.4.33 The long-term stability of anodizing current density 1A/dm2 from electrolyte of sulfuric acid and sulfosalicylic acid with pre-immersing93
Fig.4.34 The long-term stability of anodizing current density 2A/dm2 from electrolyte of sulfuric acid and sulfosalicylic acid with pre-immersing93
Fig.4.35 The long-term stability of anodizing current density 3A/dm2 from electrolyte of sulfuric acid and sulfosalicylic acid with pre-immersing93
Fig.4.36 The polarization curves of anodizing current density 3A/dm2 and from electrolyte of sulfuric acid without pre-immersing95
Fig.4.37 The polarization curves of anodizing current density 3A/dm2 and from electrolyte of sulfuric acid and sulfosalicylic acid without pre-immersing95
Fig.4.38 The polarization curves of anodizing current density 3A/dm2 and from electrolyte of sulfuric acid with pre-immersing96
Fig.4.39 The polarization curves of anodizing current density 3A/dm2 and from electrolyte of sulfuric acid and sulfosalicylic acid with pre-immersing96
1.C. Neinhuis, W.Barthlott. Characterization and distribution of water- repellent, self-cleaning plant surfaces., Annals Botany, (1997), 79: 667-677.
2.L. Feng, S. Li, Y. Li. Super-hydrophobic surfaces: From natural to artificial.,Adv Mater, (2002), 14(24): 1857-1860.
3.L. Feng, S.H. Li,Y.S. Li,et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14(24): 1857-1860.
4.Jia O, Blair P, Jonathan P R, et al. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids, 2004, 16: 4635-4644.
5.H. H. Shih and S. H. Tzou. Surf. Coat. Technol., (2000) , 124 :278.
6.C. G. L. Furmidge. Studies at Phase Interfaces, I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention . Journal of Colloid and Interface Science,(1962) ,17 (3) :309-324.
7.T.Young, Philos. Trans. R. Soc. London 95,( 1805).
8.Http://zh.wikipedia.org/
9.林昭榮.特殊的界面活性劑與異常的溼潤現象,國立中央大學化學工程與材料工程學系碩士論文(2008).
10.Http://www.ramehart.com/glossary.htm
11.R. N Wenzel. Resistance of Solid Surface to Wetting by water, Ind. Eng. Chem., 40, 988-994 (1936) 142.
12.A. B. D.Cassie, S. Baxter. Wettability of Porous Surface, Transactions of the Faraday Society, 40 (1944) 546-551.
13.A. Marmur. The lotus effect : superhydrophobicity and metast2 ability. Langmuir , 20(2004) : 3517-3519.
14.http://www.sindatek.com/pro_ts.htm
15.M.R. Song, L. Song , S. L. Xu , Z.J. Zhang . Electrochimica Acta,53(2008) 7198-7203.
16.B.L. Ou, H.C. Chen and C.H.Shen, J. Chin. Inst. Eng., 27(2004) 293-298.
17.D. R. Gabe , I. H. Dowty. Surf. Coat. Technol., 30(1987)309.
18.F. Keller, M. S. Hunter , D. L. Robinson, J. Electrochem. Soc., 100(1953)411.
19.S. Wernick , R. Pinner. The Surface Treatment and Finishing of Aluminum and its Alloy, Robert Pinner , 1(1972)297.
20.P. M. Mendes, S. Jacke, K. Chritchley, J. Plaza, Y. Chen, K. Nikitin, R.E. PALMER, J.A. Preece, S.D. Evans,D. Fitzmaurice. Langmuir 20 (2004)3766.
21.I.H. Sung, D.E. Kim. App. Sur. Sci. 239(2005)209.
22.X.Y. Yuan, T. Xie,G.S. Wu, Y. Lin, G. W. Meng, L.D. Zhang. Physica, E23(2004) 75-80 .
23.S. Setoh , A. Miyata. Sci. Pap. Inst. Phys. Chem. Res, Tokyo. (1932)189.
24.S. Wernick, R. Pinner, P.G. Sheasby. The surface treatment and finishing aluminum and its alloys, 6th ed. 331, (1987).
25.G. E. Thompson, Porous anodic alumina: fabrication, haracterization and application,Thin Solid Films 97(1997) ,192-201,.
26.O. Jessensky, F. Müller, U. Gösele. Self-organized formation of hexagonal pore arrays in anodic alumina Appl. Phys. Lett , 72 (1998) 10,.
27.Application Report NanoWizard , Publication Board, Japanese Journal of Applied Physics, 2006
28.F. Li, L. Zhang, R. M. Metzger. On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide Chem. Matter. 10(1998)2470,.
29.M. Tang, J. He, J. Zhou, P. He. Materials Letters,60(2006)2098-3100.
30.J.J. Suay, E. Gimenez, T. Rodriguez, K. Habbib, J.J. Saura. Corrosion Science, 45(2003) 611-624.
31.H. Masuda, K. Yada , A. Osaka. Jpn. J. Appl. Phys., 37(1998) 1340-1342.
32.C. L. Liao, C.W. Chu, K.Z. Fung, I.C. Leu. Journal of Alloys and Compounds, 441(2007) 1-6.
33.J.S. Zhang, X.H. Zhao, Y. Zuo, J.P. Xiong. Surface & Coatings Technology 202 (2008).
34.B.G. Park ,W. L.,J. S. Kim , K.B. Lee .Colloids and Surfaces A: Physicochem. Eng. Aspects 370 (2010) 15–19
35.G. T. Whiteside, J. P. Mathias, C. T. Seto. Science, 1991, 254:1312.
36.A. Kühnle. Current Opinion in Colloid & Interface Science 14 (2009) 157–168
37.任恕. 膜受体与传感器 .北京: 科学出版社,(1996).
38.S. Zhang. Biotechnology Advances,20(2002), 321.
39.L. D. Corinne. Estimating the Efficiency of Self-Assemblies .Journal of Supra-molecular Chemist ry, 1(2001): 39~ 52.
40.Q. H. Yuan, L. J. Wan, H. J. Jude. Am ChemSoc, 127(2005), : 16279-16286.
41.徐明監編著.最新切削加工技術, 復漢出版社,(2000).
42.姜俊賢,陳長成,李正治,卓漢明,李振發.精密量具及機件檢驗,文京圖書,(1993).
43.J. Kruger. The Johns Hopkins University Baltimore, MD 21218, USA (April, 2001).
44.F. Wang , C. Li , Y. Li , F. Li , Y. Du. Cold Regions Science and Technology 62 (2010) 29–33
45.施幸祥,李建璋.鋁材於添加5-磺基水楊酸之硫酸溶液中陽極處理再電解著色之研究,大同大學,(2007)
46.施幸祥,劉嘉?.預浸漬鋁材氧化膜上製作超疏水膜,大同大學,(2014)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林騰蛟、李彥儀(2011)。技職教育政策與發展。《技術及職業教育》季刊,1(1),6-16。
2. 劉兆明(1992)。工作動機理論的發展。應用心理學報,第一期。
3. 1.王精文、范凱棠(2002),「組織發展技術在公務人員核心價值推動之應用」,考銓季刊,第47期,第44-65頁。
4. 黃毅志(1996)。台灣地區社會學研究的職業分類與分類測量問題之探討。中研院調查研究,1,123-168。
5. 22.陳明蕾(2000),「教育組織發展成為學習型組織之反省」,成人教育,第28卷第3期,第35-40頁。
6. 廖述賢、費吳琛、王儀雯,(2006),「信任關係、工作滿足與知識分享關聯性之研究」,人力資源管理學報,第6卷3期,23-44。
7. 35.鄭勝分(1997),「數位時代變革管理的發展策略」,研考雙月刊,第30卷第2期,第93-106頁。
8. 29.楊永年(1997),「警察大學的組織發展-兼論官警兩校之合併」,警學叢刊,第28卷第3期,第25-43頁。
9. 28.曾國雄、鄧振源(1989),「層級分析法(AHP)的內涵特性與應用(上)」,中國統計學報,第27卷第6期,第5-22頁。
10. 24.陳昭珍(2002),「從實體到虛擬:談資訊組織發展現況與展望」,中國圖書館學會會報,第68期,第26-36頁。
11. 23.陳武雄(1996),「台灣地區工會運作之研究」,中國文化大學勞工研究所碩士論文。
12. 蔡典謨(1996)。美國華裔學生的傑出成就。資優教育季刊,60,25-30頁。
13. 2. 鄭宇涵 ; 黃雅卿(2010年11月14日)葛飾北齋浮世繪風景畫表現風格初探--以富嶽三十六景為例,商業設計學報,頁329-348
14. 1. 張瀚文 (1999年1月) 圖像資訊之描述與分析,大學圖書館,頁104-115
15. 13.李銓、黃旭男、楊麗芳,(1999)「台北市產業工會服務品質之探討-以製造業、造業及運輸、倉儲、通信業為調查對象」,經社法制論叢第23期,頁:271-288。
 
無相關點閱論文