跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李杭峰
研究生(外文):Hang-Feng Li
論文名稱:金屬離子對臭氧催化苯甲酸廢水之影響
論文名稱(外文):Influence of Metal Ions on Catalytic Ozonation of Benzoic Acid Wastewater
指導教授:陳泰祥
指導教授(外文):Tai-Shang Chen
口試委員:陳泰祥
口試委員(外文):Tai-Shang Chen
口試日期:2015-07-29
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:98
中文關鍵詞:臭氧催化苯甲酸廢水處理均相金屬催化
外文關鍵詞:catalytic ozonationhomogeneous catalysiswastewater treatmentBenzoic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
對苯二甲酸是近幾年製造聚酯纖維之原料,全世界產量持續增加。製程產生的廢水處理也成為重要課題,必須先回收做為催化劑之鈷錳等金屬離子,再使用生物處理等方式去除有機物。然而想回收大量水資源,以供製程再利用,則水中有機物濃度必須處理至不會傷害逆滲透薄膜之程度。利用臭氧處理低濃度之有機廢水已有許多論文發表,而金屬離子存在下會使系統變成臭氧催化反應,可能增進有機物降解效果。本研究探討使用苯甲酸製程中即存在之錳、鈷等金屬離子和作為對照的鐵離子進行臭氧催化反應,以降解苯甲酸等有機廢水,評估不同金屬離子、pH值、處理溫度、有機物濃度對有機廢水處理的效能的影響。
結果顯示,在批次實驗中只用臭氧降解苯甲酸水溶液反應時間60分鐘時移除率達到85%。而添加均相金屬離子催化臭氧降解苯甲酸水廢水在反應時間40分鐘時的移除率達到90%,60分鐘時移除率最高可達到95%,顯見金屬離子的存在對處理效能有增進的效果。金屬離子對苯甲酸的降解效果以錳離子效果為最好,優於鈷、鐵等金屬離子之效能。本研究之結果可作為對整體廢水處理製程設計之建議,例如金屬離子吸附移除時,控制適當低濃度之錳離子仍存在廢水中,可使後續臭氧處理有機廢水之效能有增強之效果。
Terephthalic acid is a raw material for producing polyester fiber in recent years,the continued increase in world demand. Wastewater treatment process produced also become an important issue, we must to recover the cobalt-manganese catalyst and the other metal ions, then use of biological treatment to remove organic way. However, for the recovery of a large number of water resources for recycling or reuse process, the final concentration of organic matter will not have to deal with the degree of injury to the reverse osmosis film. There were in used of low concentration of ozone treatment of organic wastewater have been many studies were published, and the exist of metal ions cause the system to become ozone catalytic reaction, may be able to enhance the degradation of organic matter. This study investigated the use of manganese acid manufacturing process that is existence, cobalt and other metal ions and iron ions to compare the catalytic reaction of ozone to degrade benzoic acid and other organic waste, evaluation of different metal ions, pH, process temperature, concentration of organic matter organic wastewater treatment efficacy.
The results show that in the batch experiments using only ozone degradation acid aqueous reaction time of 60 minutes, remove the rate of 85%. Added homogeneous metal ion catalyzed ozonation acid waste water removal rate in the reaction time of 40 minutes is 90%, and the time of 60 minutes to remove is to 95%, showing that the presence of metal ions to enhance the processing performance has effect. Metal ion degradation of acid
誌謝 I
英文摘要 III
中文摘要 V
第一章 前言 1
1.1研究背景 1
1.2研究目的與範疇 3
第二章 文獻回顧 5
2.1 PTA製程概述 5
2.2高級氧化程序 9
2. 3臭氧氧化法 12
2. 3.1 金屬催化 19
2. 3.2 均相催化臭氧氧化反應 21
2. 3.3 非均相催化臭氧氧化反應 23
2. 4 O3/UV臭氧氧化之原理 24
2. 4.1 O3/H2O2臭氧氧化之原理 24
2. 5 光催化氧化法 26
2. 6 超音波氧化法 27
2. 7 UV/ H2O2 28
2.8 Fenton氧化法 29
第三章 實驗 32
3.1藥品及儀器 32
3.1.1實驗藥品 32
3.1.2 實驗儀器 33
3.2實驗步驟 34
3.2.1初步實驗 34
3.2.2實驗設置 35
第四章 結果與討論 39
4.1初步測試結果 39
4.1.1 不同臭氧流率降解苯甲酸 42
4.1.2 臭氧降解不同濃度苯甲酸之情形 44
4.1.3 不同溫度臭氧降解苯甲酸 46
4.2苯甲酸降解實驗 48
4.2.1不同pH值之苯甲酸水溶液最大吸收波波長 48
4.2.2苯甲酸添加金屬催化劑之影響 50
4.2.3金屬催化劑添加量之影響 52
4.3反應系統pH值之影響 55
4.4金屬催化劑在不同pH值之影響 61
4.5苯甲酸以連續式添加金屬催化劑之影響 65
4.5.1 苯甲酸以連續式添加金屬催化劑在不同pH值之影響 67
4.5.2 連續式添加金屬催化劑在不同pH值之影響 73
第五章 結論 77
參考文獻 78
[1]鄭宇軒,以臭氧為基礎的高級氧化法處理有機廢水。大同大學化學工程所碩士論文(2013) 。
[2] 王振家,對苯二甲酸(PTA)製程廢水厭氧處理之研究。中興大學環境工程所碩士論文(2006) 。
[3] 張鈞哲,以H2O2/UV降解廢水中之有機汙染物。大同大學化學工程所碩士論文(2014) 。
[4] Thiruvenkatachari R.J. Enviro. Sci.Technol.Technol.41.1685-1697.(2006)
[5] A.B Parsons,R.L Brost, H.Ding, Z.Li,C.Zhang,B.Sheikh,G.W Brown, P.M Kane,T.R Hughes1,C.Boone1,Nature Biotechnology.22, 62 - 69 (2004)
[6]B.Langlais,D.A.Reckhow,D.R.Brink,Appl. Eng.Ozone in water treatment application and engineering,brumo,592,628-662(1991)
[7] 廖家慶,利用固定化二氧化鈦及紫外光進行臭氧催化苯甲酸廢水。大同大學化學工程所碩士論文(2014)。
[8] Gracia R.Study of catalytic ozonation of humic substances in water and their zaonation by products. Ozone Sci.Eng, ,32:57-62, (1998)
[9] 張濤,馬軍,陳忠林,齊虹,郭瑾有機酸自愛金屬氧化物上的吸附對催化臭氧氧化的影響。哈爾濱工業大學市政環境工程學院期刊,(2005)。
[10] Pines DS, Reckhow D A.Effect of dissolved Cobalt(Ⅱ) on the ozonation of Oxalic acid.Environ.Sci.Technol. 36:4046-4051(2002) ,
[11] 羅雲松,利用錳離子為催化劑應用於Fenton氧化法之技術改良。聯合大學工學院專題,(2011) 。
[12] G.F.IJpelaar,D.J.H.Harmsen,M.Heringa,tech.D2.4.1.1, (2007)
[13] 曾軍凱,複合式電芬頓與電吸附法處理染整廢水之研究。大同大學化學工程所碩士論文,(2013)。
[14] V.K. Sharma, T.M. Triantis, M.G. Antoniou, X.X. He, M. Pelaez, C.S. Han, W.H. Song,K.E.O’Shea,A.A.delaCruz,T. Kaloudis, A. Hiskia, D.D. Dionysiou,Destruction of microcystins by conventional and advanced oxidationprocesses: a review, Sep. Purif. Technol. 91 3–17. (2012)
[15]黃學聰,以Fenton程序處理4硝基酚廢水。國立交通大學環境工程所碩士論文(2007)。
[16] Gogate P R, Pandit A B. A review of imperative technologies forwastewater treatment Ⅱ: hybrid methods. Advances in EnvironmentalResearch,(3/4):553-597. (2004)
[17] Masten S J, Davies S H R. The use of ozonation to degrade organic contaminants in wastewater. Environ. Sci. Technol,28(4):181-185. (1994)
[18] C. Gottschalk, J. A. Libra, A. Saupe, Ozonation of water and waste water, WILEY-VCH, New York, (2000).
[19] Lenntech Water treatment solution, Ozone decomposition, Retrieved June15, Science (2009)
[20] Yu-Hsuan Cheng, Organic wastewater treatment by ozone-based advanced oxidation processes, Science Department of Chemical Engineering Tatung University, July (2013).
[21]Ma J,Graham.N J D.Degradation of atrazine by manganese catalyzed ozonation:Influence of humic substance.Water Research,33:785-792(1999)
[22] R. Salgado, A. Oehmen, J.P. Noronha, M.A.M. Reis, J. Hazard. Mater. 241–242 182–189. (2012)
[23] J.H. Ramirez, C.A. Costa, L.M. Maderia, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, A.J. Lopez-Peinado, R.M. Martin-Aranda, Appl. Catal. B Environ. 71 44–56. (2007)
[24] Y. Guo, L. Yang, X. Cheng, X. Wang, J. Environ. Anal. Toxicol. 2 1–7. (2012)
[25] J.A. Zazo, J.A. Casas, A.F. Mohedano, M.A. Gilarranz, J.J. Rodriguez, Environ. Sci.Technol. 399295–9302. (2005)
[26] U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Prepa-ration and Characterization, VCH Publishers Inc., Weinheim, Germany,(1991).
[27] M. Winkler, J.R. Lawrence, T.R. Neu, Water Res. 35 3197–3205. (2001)
[28] V. Matamoros, J. Garcia, J.M. Bayona, Water Res. 42 653–660. (2008)
[29] A. Babuponnusami, K. Muthukumar , J. Environ. Chem. Eng., 2, 557-572 (2014)
[30] L.A. Bernal-Martinez, C. Barrera-Diaz, C. Solis-Morelos, N. Reyna, Synergy of electrochemical and ozonation processes in industrial wastewater treatment,
Chem. Eng. J. 165 71–77. (2010)
[31] P. Bautista, A.F. Mohedano, J.A. Casas, J.A. Zazo, J.J. Rodriguez, An overview of theapplication of Fenton oxidation to industrial wastewaters treatment, J. Chem.Technol. Biotechnol. 83 1323–1338. (2008)
[32] A.Y. Sychev, V.G. Isak, Iron compounds and the mechanism of the homogeneouscatalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates, Russ. Chem. Rev. 64 1105–1129. (1995)
[33] J.J. Pignatello, E. Oliveros, A. Mackay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry,
Crit. Rev. Environ. Sci. Tech. 36 1–84. (2006)
[34] C. Jiang, S. Pang, F. Ouyang, J. Ma, J. Jiang, A new insight into Fenton and Fentonlike processes for water treatement, J. Hazard. Mater. 174 813–817. (2010)
[35] J.J. Pignatello, Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy
herbicides by hydrogen peroxide, Environ. Sci. Technol. 26 944–951. (1992)
[36] Y.H. Huang, C.C. Chen, G.H. Huang, S.S. Chou, Comparison of a novel electro-Fenton method with Fenton’s reagent in treating a highly contaminated wastewater,Water Sci. Technol. 43 17–24. (2001)
[37] J.M. Joseph, H. Destaillats, H.M. Hung, M.R. Hoffmann, The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton’s reactions, J. Phys. Chem. A 104 301–307. (2000)
[38] E. Brillas, B. Boye, M.M. Dieng, General, UV-assisted cathodic Fenton treatments
for the mineralization of herbicide MCPA, J. Electrochem. Soc. 150 583–589. (2003)
[39] B. Iurascu, I. Siminiceanu, D. Vione, M.A. Vicente, A. Gil, Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite, Water Res. 43 1313–1322. (2009)
[40] W.X. Zhang, Nanoscale iron particles for environmental remediation: an overview,J. Nanopart. Res. 5 323–332. (2003)
[41] A. Babuponnusami, K. Muthukumar, Treatment of phenol-containing wastewater by photo electro-Fenton method using supported nanoscale zero-valent iron,
Environ. Sci. Pollut. Res. (2012),
[42] Abu Amr, S.S., Aziz, H.A.,. New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process. Waste Manag. 32, 1693e1698. (2012).
[43] Ayodele, O.B., Auta, H.S., Nor, N.M., Artificial neural networks, optimization
and kinetic modeling of amoxicillin degradation in photo-Fenton process using aluminum pillared montmorillonite-supported ferrioxalate catalyst. Ind. Eng.Chem. Res. 51, 16311e16319.(2012).
[44] Zeng, Z., Zou, H., Li, X., Sun, B., Chen, J., Shao, L.,. Ozonation of phenol with O3/Fe(II) in acidic environment in a rotating packed bed. Ind. Eng. Chem. Res. 51,
10509e10516. ( 2012)
[45] Ji, J., Xing, Y., Ma, Z., Cai, J., Zheng, P., Lu, H.,. Toxicity assessment of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewater by luminescent bacterium. J. Hazard. Mater. 246, 319-323. (2013)
[46] Zeng, Z., Zou, H., Li, X., Arowo, M., Sun, B., Chen, J., Chu, G., Shao, L.,. Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chem. Eng. J. 229, 404-411. (2013)
[47] S.K. Singh, W.Z. Tang, G. Tachiev, Fenton treatment of landfill leachate under different COD loading factors, Waste Manage. 33 2116–2122. (2013)
[48] M.S. Luo, S.H. Yuan, M. Tong, P. Liao, W.J. Xie, X.F. Xu, An integrated catalyst of
Pd supported on magnetic Fe3O4 nanoparticles: simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants, Water Res. 48 190–199.(2014)
[49] Kasprzyk-Hordern B,Ziolek M,Nawrocki J. Appl. Catal. B Environ.,,46: 639-669.(2003).
[50] ]M. Li, Z. Zeng ,Y. Li , M. Arowo, J. F. Chen, H. Meng , L. Shao, J. Environ. Manag. 150, 404 – 411, (2015)
[51] Y. Baba, T. Yatagai, T. Harada, Y. Kawase, Chem. Eng. J. 15, S1385-8947,(2015)
[52] J. J. Pignatello, D. Liu, P. Huston, Environ. Sci. Technol. 33,1832, (1999)
[53] A. Babuponnusami , K. M Y. Baba, T. Yatagai, T. Harada, Y. Kawase, Chem. Eng. J. 15, S1385-8947,uthukumar, J. Environ. Chem. Eng., 2, 557–572, (2014)
[54]Pines D S,Reckhow D A. Environ. Sci. Technol. 36:4046—4051.(2002).
[55]呂冠霖,司洪濤,高濃度COD廢水氧化技術評估。(2004)
[56]程麗華,黎明,倪福祥高級氧化技術在水處理中的應用。青島建築工 程學院學報,(2003)。
[57]鍾侑民,商能州,盧宗隆,張朝謙,賴偉嘉,白子易高科技產業,Local
Scrubber 廢水回收系統之案例探討。台灣水環境再生研討會,(2011)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top