跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周舒韡
研究生(外文):Shu-Wei Chou
論文名稱:以電化學沉積法製備金屬硫化物及其於混合式超級電容器正極材料之應用
論文名稱(外文):Electrodeposition of metal sulfides as cathode material for hybrid supercapacitors
指導教授:林正裕林正裕引用關係
指導教授(外文):Jeng-Yu Lin
口試委員:林正裕
口試委員(外文):Jeng-Yu Lin
口試日期:2015-07-17
學位類別:博士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:165
中文關鍵詞:電沉積脈衝反轉沉積陰極硫化鎳混合式超級電容器硫化钴
外文關鍵詞:Pulse-reversal depositionelectrodepositionNickel sulfideCobalt sulfideCathodeHybrid supercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:906
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來,具有奈米結構之金屬硫化物在混合式超級電容器中已經廣泛的被研究。主要是由於具有奈米結構之金屬硫化物經過許多電化學的量測不但有良好的電容,此外在穩定性上優良的表現。近來,金屬硫化物已開始大量的被製備及研究,其主要大多利用化學合成的方式進行製備,如:化學沉積法及水熱合成法。然而利用以上的方法製備金屬硫化物,最終都需要添加助導碳及高分子黏著劑進行混將後,再進一步的塗佈於導電底材上,而這些額外的添加劑會提供電極額外的阻抗。因此在第三章當中,金屬硫化物(硫化鈷及硫化鎳)己成功的利用動電位沉積的方式製備於鎳網底材上。而硫化鈷及硫化鎳活性材料分別在4Ag-1及2Ag-1的充放電流下進行充放電時分別有224.7 mAhg-1及 99.6 Fg-1的表現。此外,硫化鈷電極在8Ag-1的充放電流下進行1000圈的循穩定測試後,還能幾乎有接近100%的電容保持率及99%以上的庫倫效率。而硫化鎳電極在8Ag-1的充放電流下進行1000圈的循穩定測試後發現,1000圈時電容還能保有500圈時的91%。
在本論文的第四章當中金屬硫化物電沉積之機制己經藉由循環伏安法及電子能譜儀成功的被研究。並且在電沉積的過程當中硫尿的角色也成功的被研究出來。從循環伏安法的量測結果中發現,溶液中的部分金屬離子(鈷離子及鎳離子)會與硫尿進行錯合之反應,並且在進一步的被還原成金屬硫化物。為了了解金屬硫化物之電沉積制,電子能譜儀分析的結果也作了進一步的證明。
硫化鎳電極己藉由動電位沉積的方式成功的製備,然而動電位沉積的設備過於昂貴,所以在實際的應用上有一定的困難。因此在第五章當中己成功的發展出以脈衝反轉沉積的方式製備出具有同樣組成之硫化鎳電極。並且NSPR-2之電極於1M的KOH溶液中以充放電電流密度為2 A g-1及32 A g-1進行充放電之測試後分別得到179.5 mAhg-1和 105.9 mAhg-1的電容表現。此外,混合式超級電容器也分別以具有片狀結構之NSPR-2電極作為正極及碳纖維步作為負極所組成,並且同時具有26.4 Wh kg-1的能量密度及1978 W kg-1功率密度。
In recent years, nanostructure metal sulfides have been widely employed as electrode materials in hybrid supercapacitors (SCs) due to their high specific capacity and excellent electrochemical stability. Generally, the metal sulfides are usually prepared by using chemical method, such as chemical precipitation and hydrothermal methods. However, the metal sulfide powders still need polymer binder, conducting agent and high pressure coating on the conductive substrate, which could contribute extra contact resistances.
In the chapter 3 of this thesis, metal sulfides (cobalt sulfide and nickel sulfide) were successfully deposited on Ni foam substrates by the facile potentiodynamic (PD) deposition method. The CoS and Ni3S2 electroactive materials delivered remarkable specific capacity up to 224.7 mAhg-1 at 4 A g-1 and 99.6 Fg-1 at 2 Ag-1, respectively. Moreover, the CoS electrode exhibited about 100% retention of specific capacity around and 99% Columbic efficiency after consecutive 1000 cycles with a fairly high current density of 8 A g-1.As for the Ni3S2 flaky electrode, it can still possess specific capacity retention around 91% after cycling of 500-1000 cycles at a high current density of 4 Ag-1.
In the chapter 4 of this thesis, the corresponding deposition mechanism of metal sulfides has been investigated by using cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The CV results suggested that the partial metal (M=Ni2+, Co2+) ions complexes with the electroreduced product of TU in the form of [MTU]2+ and the formation of electroreduction of [MTU]2+ complexes onto the Ni foam surface. Then the [MTU]2+ would further reduce to MS onto the Ni foam surface. In order to comprehend the electrodeposition mechanism of MS, the XPS analyses were carried out the results.
The Ni3S2 is successfully prepared on a Ni foam substrate by the proposed potentiodynamic, the required power-supply equipment for the PD deposition is relatively expansive. It would be unfeasible for practical applications. Therefore, the pulse reversal deposition technique have been developed to prepare Ni3S2 electrode in the chapter 5 of this thesis. The NSPR-2 electrode delivered remarkable specific capacity up to 179.5mAhg-1 at 2 A g-1 and 105.9 mAhg-1 at 32 A g-1 charge–discharge current density in 1.0 M KOH aqueous electrolyte. Furthermore, a hybrid SC with the flaky Ni3S2 as the positive electrode material and carbon fiber cloth (CFC) as the negative electrode, exhibited a high energy density (26.4 W h kg−1) at an power density of 1978 W kg−1.
ABSTRACT i
摘要 iii
LIST OF CONTENT v
LIST OF FIGURES vii
LIST OF TABLES xvii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEWS 4
2.1 Electric double-layer capacitors 4
2.2 Pseudocapacitors 11
2.2.1 Conducting polymer 11
2.2.2 Ruthenium oxide and manganese oxide 15
2.3 Battery type electrodes 19
2.3.1 Transition metal oxides and hydroxides 19
2.3.2 Transition metal sulfides 27
2.4 Symmetric supercapacitor 34
2.5 Asymmetric supercapacitor 37
2.6 Hybrid supercapacitor 40
2.6 Motivation 46
CHAPTER 3 47
Cathodic deposition of metal sulfide nanostructures as high-performance battery-type electroactive materials 47
3.1 Introduction 47
3.2 Experimental 48
3.2.1 Preparation of CoS and Ni3S2 electrode 48
3.2.2 Characterizations and electrochemical measurements 49
3.3 Results and discussion 50
3.3.1 CoS electroactive material 50
3.3.1.1 Surface morphology and composition 50
3.3.1.2 Cyclic voltammogram of CoS electrode 55
3.3.1.3 Charge/discharge measurement of CoS electrode 57
3.3.1.4 Rate capability and cycling performance of the CoS electrode 60
3.3.1.5 EIS measurement of the CoS electrode 62
3.3.2 Ni3S2 electroactive material 67
3.3.2.1 Surface morphology and composition 67
3.3.2.2 Cyclic voltammogram of Ni3S2 electrode 70
3.3.2.3 Charge/discharge measurement of Ni3S2 electrode 72
3.3.2.4 Cycling performance of the Ni3S2 electrode 74
3.3.2.5 EIS measurement of the Ni3S2 electrode 76
3.4 Conclusions 80
CHAPTER 4 81
Electrodeposition mechanism of metal sulfides 81
4.1 Introduction 81
4.2 Experimental 82
4.2.1Preparation of solution and sample 82
4.2.2 Characterizations and electrochemical measurements 82
4.3 Results and discussion 83
4.3.1 Deposition mechanism of Ni3S2and CoS 83
4.4 Conclusions 95
CHAPTER 5 96
Pulse-reversal deposition of nickel sulfide thin film as a cathode material for hybrid supercapacitors 96
5.1 Introduction 96
5.2Experimental 97
5.2.1 Preparation of Ni3S2 electrode 97
5.2.2 Assembly of hybrid SCs 98
5.2.3 Characterizationsand electrochemical measurements 99
5.3 Results and discussion 100
5.3.1 Characterization of Ni3S2 electrode 100
5.3.2 Cyclic voltammogram of Ni3S2 electrode 104
5.3.3 Charge/discharge measurement of Ni3S2 electrode 106
5.3.4 Cycling performance of the Ni3S2 electrode 109
5.3.5 EIS measurement of the Ni3S2 electrode 111
5.3.6 Ni3S2//CFC hybrid supercapacitor 116
5.4 Conclusions 128
CHAPTER 6 Conclusions 129
CHAPTER 7 Future work 131
REFERENCE 135
[1]J. Cao and A. Emadi, IEEE Trans. Power Electron., 27, 122 (2012).
[2]J. H. Chae, K. C. Ng and G. Z. Chen, Proc. Inst. Mech. Eng., Part A, 224, 479 (2010).
[3]C. Liu , F. Li , L. P. Ma and H. M. Cheng , Adv. Mater., 22, E28 (2010).
[4]P. Simon and Y. Gogotsi , Nat. Mater., 7, 845 (2008) .
[5]T. Y. Wei , C. H. Chen , H. C. Chien , S. Y. Lu and C. C. Hu, Adv. Mater., 22 , 347 (2009).
[6]B. E. Conway , Electrochemical supercapacitors: Scientifi c fundamentals and technological applications , Kluwer Academic/Plenum , New York 1999 .
[7]C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Nano Lett., 6, 2690 (2006).
[8]A. Izadi-Najafabadi , S. Yasuda , K. Kobashi , T. Yamada , D. N. Futaba , H. Hatori , M. Yumura , S. Iijima and K. Hata , Adv. Mater., 22, E235 (2010).
[9]Y. G. Wang and Y. Y. Xia , Electrochem. Commun., 7, 1138 (2005).
[10]P. C. Chen , G. Z. Shen , Y. Shi , H. T. Chen and C. W. Zhou , ACS Nano., 4 , 4403 (2010).
[11]Z. S. Wu , W. Ren , D. W. Wang , F. Li , B. Liu and H. M. Cheng , ACS Nano., 4, 5835 (2010).
[12]J. W. Lang , L. B. Kong , M. Liu , Y. C. Luo and L. Kang , J. Solid State Electr., 14, 1533 (2010).
[13]J. H. Park , O. O. Park , K. H. Shin , C. S. Jin and J. H. Kim , Electrochem. Solid-State Lett., 5 , H7 (2002).
[14]S. Nohara , A. A. Toshihide , H. Wada , N. Furukawa , H. Inoue , N. Sugoh , H. Iwasaki and C. Iwakura , J. Power Sources, 157 , 605 (2006).
[15]H. Q. Wang , Z. S. Li , Y. G. Huang , Q. Y. Li andX. Y. Wang , J. Mater. Chem., 20 , 3883 (2010).
[16]Q. T. Qu , P. Zhang , B. Wang , Y. H. Chen , S. Tian , Y. P. Wu and R. Holze , J. Phys. Chem. C, 113, 14020 (2009).
[17]T. Brousse , P. L. Taberna , O. Crosnier , R. Dugas , P. Guillemet , Y. Scudeller , Y. Zhou , F. Favier , D. Belanger and P. Simon , J. Power Sources, 173 , 633 (2007).
[18]Q. T. Qu , Y. Shi , L. L. Li , W. L. Guo , Y. P. Wu , H. P. Zhang , S. Y. Guan and R. Holze , Electrochem. Commun., 11, 1325 (2009).
[19]W. H. Jin , G. T. Cao and J. Y. Sun , J. Power Sources, 175, 686 (2008).
[20]Z. Fan , J. Yan , T. Wei , L. Zhi , G. Ning , T. Li and F. Wei, Adv. Funct. Mater., 21, 2366 (2011).
[21]E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007).
[22]A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).
[23]D. Hulicova, J. Yamashita, Y. Soneda, H. Hatori, M. Kodama, Chem. Mater., 17, 1241 (2005).
[24]B. Fang and L. Binder, J. Phys. Chem. B, 110, 7877 (2006).
[25]H. F. Li, H. Xi, S. M. Zhu, Z. Y. Wen, R. D. Wang, Micropor. Mesopor. Mater., 96, 357 (2006).
[26]V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, Sabu Thomas and B. Wei, J. Phys. Chem. C, 111, 7527 (2007).
[27]Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, Electrochim. Acta, 49, 4157 (2004).
[28]D. Zhang, X. Zhang, Y. Chen, C. Wang, Y. Ma, Electrochim. Acta, 69, 364 (2012).
[29]C. Arbizzani, M. Mastragostino and L. Meneghellom, Electrochim. Acta, 41, 21 (1996).
[30]P. Novak, K. Muller, K. S. V. Santhanam and O. Haas, Chem. Rev., 97, 207 (1997).
[31]S. Ghosh and O. Inganas, Adv. Mater., 11, 1214 (1999).
[32]C. Peng, S. W. Zhang, D. Jewell and G. Z. Chen, Prog. Nat. Sci., 18, 777 (2008).
[33]K. S. Ryu, S. K. Jeong, J. Joo and K. M. Kim, J. Phys. Chem. B., 111, 731 (2007).
[34]M. D. Ingram, H. Staesche and K. S. Ryder, Solid State Ionics, 169, 51 (2004).
[35]M. D. Ingram, H. Staesche and K. S. Ryder, J. Power Sources, 129, 107 (2004).
[36]K. A. Noh, D. W. Kim, C. S. Jin, K. H. Shin, J. H. Kim, J. M. Ko, J. Power Sources,124, 593 (2003).
[37]J. H. Park, J. M. Ko, O. O. Park and D. W. Kim, J. Power Sources, 105, 20 (2002).
[38]K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae and Y. H. Lee, J. Electrochem. Soc., 149, A1058 (2002).
[39]H. T. Ham, Y. S. Choi, N. Jeong and I. J. Chung, Polymer, 17, 6308 (2005).
[40]M. Hughes, M. S. P. Shaffer, N. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray and A. H. Windle, Adv. Mater., 14, 382 (2002).
[41]M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray and A. H. Windle, Chem. Mater., 14, 1610 (2002).
[42]K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak, Chem. Phys. Lett., 347, 36 (2001).
[43]Q. F. Xiao and X. Zhou, Electrochim. Acta, 48, 575 (2003).
[44]C. S. Du, J. Yeh and N. Pan, Nanotechnology, 16, 350 (2005).
[45]V. Khomenko, E. Frackowiak and F. Beguin, Electrochim. Acta, 50, 2499 (2005).
[46]Z. Niu, Z. Yang, Z. Hu, Y. Lu, and C. C. Han, Adv. Funct. Mater., 13, 925 (2003)
[47]H. Qiu, M. Wan, B. Matthews, and L. Dai, Macromolecules, 34, 675 (2001).
[48]Z. Wei and M. Wan Adv. Mater. (Weinheim, Ger.), 14, 1314 (2002).
[49]J. Huang and R. B. Kaner, J. Am. Chem. Soc., 126, 851 (2004).
[50]D. Belanger, X. M. Ren, J. Davey, F. Uribe and S. Gottesfeld, J. Electrochem. Soc., 147, 2923 (2000).
[51]F. Fusalba, P. Gouerec, D. Villers and D. Belanger, J. Electrochem. Soc., 148, A1 (2001).
[52]D. Li, J. X. Huang and R. B. Kaner, Acc. Chem. Res., 42, 135 (2009).
[53]J. C.Carlberg and O. Inganӓs, J. Electrochem. Soc., 144, L61 (1997).
[54]K. S. Ryu, Y. G. Lee, Y. S. Hong, Y. J. Park, X. L. Wu, K. M. Kim, M. G. Kang, N. G. Park and S. H. Chang, Electrochim. Acta, 50, 843 (2004).
[55]K. Lota, V. Khomenko and E. Frackowiak, J. Phys. Chem. Solids, 65, 295 (2004).
[56]W. Li , J. Chen , J. Zhao, R. Zhang and J. Zhu, Mater. Lett., 59, 800 (2005).
[57]L. Z. Fan and J. Maier, Electrochem. Commun., 6, 849 (2004).
[58]V. Gupta, and N. Miura, Electrochem. Solid-State Lett., 8, A630 (2005).
[59]X. Chen and O. Inganas, Synth. Met., 74, 159 (1995).
[60]X. Chen, K.Z. Xing and O. Inganas, Chem. Mater., 8, 2439 (1996).
[61]N. S. Murthy, L. W. Shacklette and R. H. Baughmann, J. Chem. Phys., 87, 2346 (1987)
[62]M. Winokur, P. Walmsley, J. Smith and A. J. Heeger, Macromolecules, 24, 3812 (1991).
[63]Z. A. Hu, Y. L. Xie, Y. X. Wang, L. P. Mo, Y. Y. Yang and Z. Y. Zhang, Mater. Chem. Phys., 114, 990 (2009).
[64]J. P. Zheng and T. R. Jow, J. Electrochem. Soc., 142, L6 (1995).
[65]C. C. Hu, W. C. Chen and K. H. Chang, J. Electrochem. Soc., 151, A281 (2004).
[66]L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef and Y. Cui, ACS Nano., 5, 8904 (2011).
[67]W. Yan, T. Ayvazian, J. Kim, Y. Liu, K. C. Donavan, W. Xing, Y. Yang, J. C. Hemminger and R. M. Penner, ACS Nano, 5, 8275 (2011).
[68]Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu and H. M. Cheng, ACS Nano, 4, 5835 (2010).
[69]G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui and Z. Bao, Nano Lett., 11, 2905 (2011).
[70]A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud and J. W. Long, Nano Lett., 7, 281 (2007).
[71]J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong and H. J. Fan, Adv. Mater., 23, 2076 (2011).
[72]X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong and Z. L. Wang, Adv. Mater., 24, 938 (2012).
[73]P. Ragupathy, D. H. Park, G. Campet, H. N. Vasan, S. J. Hwang, J. H. Choy, and N. Munichandraiah, J. Phys. Chem. C, 113, 6303 (2009).
[74]Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang and J. Wang, J. Mater. Chem., 21, 14706 (2011).
[75]W. Wei, X. Cui, W. Chen and D. G. Ivey, Chem. Soc. Rev., 40, 1697 (2011).
[76]L. Wei, C. Li, H. Chu and Y. Li, Dalton Trans., 40, 2332 (2011).
[77]Y. Y. Gao, S. L. Chen, D. X. Cao, G. L. Wang and J. L. Yin, J. Power Sources, 195, 1757 (2010).
[78]W. J. Zhou, J. Zhang, T. Xue, D. D. Zhao and H. L. Li, J. Mater. Chem., 18, 905 (2008).
[79]W. J. Zhou, M. W. Xu, D. D. Zhao, C. L. Xu and H. L. Li, Micropor. Mesopor. Mater., 117, 55 (2009).
[80]M. J. Deng, F. L. Huang, I. W. Sun, W. T. Tsai and J. K. Chang, Nanotechnology, 20, 175602 (2009).
[81]L. Li, Y. Li, S.Y. Gao and N. Koshizaki, J. Mater. Chem., 19, 8366 (2009).
[82]X. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang and X. Liang, Electrochim. Acta, 56, 4985 (2011).
[83]J. Xu, L. Gao, J. Cao, W. Wang and Z. Chen, Electrochim. Acta, 56, 732 (2010).
[84]L. Cao, F. Xu, Y. Y. Liang and H. L. Li, Adv. Mater., 16, 1853 (2004).
[85]C. C. Hu and T. Y. Hsu, Electrochim. Acta, 53, 2386 (2008).
[86]C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 145, 4097 (1998).
[87]F. Cao, G. X. Pan, P. S. Tang and H. F. Chen, J. Power Sources, 216, 395 (2012).
[88]L. Wu, Y. Wu, H. Wei, Y. Shi and C. Hu, Mater. Lett., 58, 2700 (2004).
[89]L. Xiang, X. Y. Deng and Y. Jin, Scripta Mater., 47, 219 (2002).
[90]M. S. Wu and H. H. Hsieh, Electrochim. Acta, 53, 3427 (2008).
[91]X. Li, X. Zhang, Z. Li and Y. Qian, Solid State Commun., 137, 581 (2006).
[92]Y. Wang, J. Zhu, X. Yang, L. Lu and X. Wang, Thermochim. Acta, 437, 106 (2005).
[93]Z. H. Liang, Y. J. Zhu and X. L. Hu, J. Phys. Chem. B, 108, 3488 (2004).
[94]D. W. Wang, F. Li and H. M. Cheng, J. Power Sources, 185, 1563 (2008).
[95]K. R. Prasad and N. Miura, Appl. Phys. Lett., 85, 4199 (2004).
[96]M. S. Wu and C. H. Yang, Appl. Phys. Lett., 91, 033109 (2007).
[97]S. M. Paek, E. J. Yoo and I. Honma, Nano Lett., 9, 72 (2009).
[98]D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. V. Saraf, J. Zhang, I. A. Aksa and J. Liu, ACS Nano, 3, 907 (2009).
[99]J. W. Zhu, S. Chen, H. Zhou and X. Wang, Nano Res., 5, 11 (2012).
[100]S. Deabate and F. Henn, Electrochim. Acta, 50 (2005) 2823.
[101]X. H. Liu, L. Yu, J. Power Sources, 128, 326 (2004).
[102]Y. Fu, J. Song, Y. Zhu and C. Cao, J. Power Sources, 262, 344 (2014).
[103]T. Brousse, D. B´elanger, and J. W. Long, J. Electrochem. Soc., 162, A5185 (2015).
[104]C. M. Wu, C. Y. Fan, I. W. Sun, W. T. Tsai and J. K. Chang, J. Power Sources, 196, 7828 (2011).
[105]J. Jiang, J. P. Liu, R. M. Ding, J. H. Zhu, Y. Y. Li, A. Z. Hu, X. Li and X. T. Huang, ACS Appl. Mater. Interfaces, 3, 99 (2011).
[106]L. Cao, L. B. Kong, Y. Y. Liang and H. L. Li, Chem. Commun., 14, 1646 (2004).
[107]F. Tao, Y. Q. Zhao, G. Q. Zhang and H. L. Li, Electrochem. Commun., 9, 1282 (2007).
[108]S. J. Bao, C. M. Li, C.X. Guo and Y. Qiao, J. Power Sources, 180, 676 (2008).
[109]P. Justin and G. R. Rao, Int. J. Hydrogen Energy, 35, 9709 (2010).
[110]C. Z Yuan, L. F Shen, F. Zhang, X. j. Lu, D. K. Li and X. G. Zhang, J. Colloid Interface Sci., 349, 181 (2010).
[111]T. Zhu, Z. Wang, S. Ding, J. S. Chen and X. W. Lou, RSC Adv., 1, 397 (2011).
[112]L. Zhang, H. B. Wu and X. Wen (David) Lou, Chem. Commun., 48, 6912 (2012).
[113]B. Qu, Y. Chen, M. Zhang, L. Hu, D. Lei, B. Lu, Qiuhong Li, Y. Wang, L. Chen and T. Wang, Nanoscale, 4, 7810 (2012).
[114]J. Pu, Z. Wang, K. Wu, N. Yu and E. Sheng, Phys.Chem.Chem.Phys., 16, 785 (2014).
[115]J. Yang, X. Duan, Q. Qin and W. Zheng, J. Mater. Chem. A, 1, 7880 (2013).
[116]T. Zhu, Z. Wang, S. Ding, J. S. Chen and X. Wen (David) Lou, RSC Advances, 1, 397 (2011).
[117]J. Yang, W. Guo, D. Li, C. Wei, H. Fan, L. Wu, W. Zheng, J. Power Sources, 268, 113 (2014).
[118]L. Yu, B. Yang, Q. Liu, J. Liu, X. Wang, D. Song, J. Wang, X. Jing, J. Electroanal. Chem., 739, 156 (2015).
[119]C. Z. Yuan, X. G. Zhang, B. Gao and J. Li, Mater. Chem. Phys., 101, 148 (2007).
[120]L. Demarconnay and E. Raymundo-Piñero, F. Béguin Electrochem. Commun., 12, 1275 (2010).
[121]H. Xia, Y. S. Meng, G. Yuan, C. Cui, and Li Lu, Electrochem. Solid-State Lett., 15, A60 (2012).
[122]T. Brousse, M. Toupin, and D. B´elanger, J. Electrochem. Soc., 151, A614 (2004).
[123]D. B´elanger, T. Brousse, and J. W. Long, Interface, 17, 49 (2008).
[124]J. W. Long, D. B´elanger, T. Brousse, W. Sugimoto, M. B. Sassin, and O. Crosnier, MRS Bull., 36, 513 (2011).
[125]H. Jiang, C. Li, T. Sun and J. Ma, Nanoscale, 4, 807 (2012).
[126]L. B. Kong, M. Liu, J. W. Lang, Y. C. Luo, and L. Kang J. Electrochem. Soc., 156, A1000 (2009).
[127]Z. Tang, C. h. Tang, and H. Gong, Adv. Funct. Mater. 22, 1272 (2012).
[128]B. Yang, Lei Yu, Q. Liu, J. Liu, W. Yang, H. Zhang, F. Wang, S. Hu, Y. Yuana and J. Wang, Cryst. Eng.Comm., 17, 4495 (2015).
[129]L. B. Kong, M. C. Liu, J. W. Lang, M. Liu, Y. C. Luo, and L. Kang, J. Solid State Electrochem., 15, 571 (2011).
[130]F. Loglio, M. Innocenti, A. Jarek, S. Caporali, I. Pasquini and M. L. Foresti, J. Electroanal. Chem., 638, 15 (2010).
[131]J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bormben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc., Eden Prairie, MN, USA, 1995.
[132]M. Quinet, F. Lallemand, L. Ricq, J. y. Hihn, P. Delobelle, Surf. Coat. Technol. 204, 3108 (2010).
[133]Y. Sun, C. Liu, David C. Grauer, J. Yano, J. R. Long, P. Yang, and C. J. Chang, J. Am. Chem. Soc., 135, 17699 (2013).
[134]Q. H. Huang, X. Y. Wang and J. Li, Electrochim. Acta, 52, 1758 (2006).
[135]J. Zhang, L. B. Kong, J. J. Cai, H. Li, Y. C. Luo and L. Kang, Microporous Mesoporous Mater., 132, 154 (2010).
[136]A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and applications, 2nd ed., Wiley, New York, 2001.
[137]R. de Levie, Electrochim. Acta, 8, 751 (1963).
[138]G. W. Yang, C. L. Xu and H. L. Li, Chem. Commun., 6537 (2008).
[139]T. Zhao, H. Jiang, and J. Ma, J. Power Sources, 196, 860 (2011).
[140]J. H. Kim, K. Zhu, Y. F. Yan, C. L. Perkins, and A. J. Frank, Nano Lett., 10, 4099 (2010).
[141]D. C. Wang, W. B. Ni, H. Pang, Q. Y. Lu, Z. J. Huang, and J. W. Zhao, Electrochim. Acta, 55, 6830 (2010).
[142]C. Masarapu, H. F. Zeng, K. H. Hung, and B. Q. Wei, ACS Nano, 3, 2199 (2009).
[143]Z. A. Hu,Y. L. Xie,Y. X.Wang, L. J. Xie,G. R. Fu, X. Q. Jin,Z. Y. Zhang,Y. Y.Yang, and H. Y. Wu, J. Phys. Chem. C, 113, 12502 (2009).
[144]D. D. Zhao, S. J. Bao, W. J. Zhou, and H. L. Li, Electrochem. Commun., 9, 869 (2007).
[145]C. Z. Yuan, H. Dou, B. Gao, L. H. Su, and X. G. Zhang, J. Solid State Electrochem., 12, 1645 (2008).
[146]C. Q. Cui and J. Y. Lee, J. Electrochem. Soc., 141, 2030 (1994).
[147]RaminMohamed Ali Tehrani and Sulaiman Ab Ghani, J. Colloid Interface Sci., 339, 125 (2009).
[148]Q. Han, K. Liu, J. Chen, and X. Wei, Int. J. Hydrogen Energy, 28, 1207 (2003).
[149]H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, and Q. Meng, Energy Environ. Sci., 4, 2630 (2011).
[150]U. S. Mohanty, B. C. Tripathy, S. C. Das, and V. N. Misra, Metall. Mater. Trans. B, 36, 737 (2005).
[151]R. Henr´ıquez, M. Froment, G. Riveros, E. A. Dalchiele, H. G´omez, P. Grez, and D. Lincot, J. Phys. Chem. C, 111, 6017 (2007).
[152]T. J. Hrynaszkiewicz, J. Kozłowski, E. Cieszy´nska, and T. Krogulec, J. Electroanal. Chem., 367, 213 (1994).
[153]A. Ghahremaninezhad, E. Asselin, and D. G. Dixon, J. Phys. Chem. C, 115, 9320 (2011).
[154]A. E. Bolz´an, A. S. M. A. Haseeb, P. L. Schilardi, R. C. V. Piatti, R. C. Salvarezza, and A. J. Arvia, J. Electroanal. Chem., 500, 533 (2001).
[155]M. Yan, K. Liu, and Z. Jiang, J. Electroanal. Chem., 408, 225 (1996).
[156]L. Muller, G. N. Mansurov, and O. A. Petrii, J. Electroanal. Chem., 96, 159 (1979).
[157]J. Z. Zheng, B. Ren,D. Y.Wu, and Z. Q. Tian, J. Electroanal. Chem., 574, 285 (2005).
[158]G. Garcia, J. L. Rodriguez, G. I. Lacconi, and E. Pastor, J. Electroanal. Chem., 588, 169 (2006).
[159]O. Azzaroni, G. Andreasen, B. Blum, R. C. Salvarezza, and A. J. Arivia, J. Phys. Chem. B, 104, 1395 (2000).
[160]St. Astegger and E. Bechtold, Surf. Sci., 122, 491 (1982).
[161]J. Shim, M. Klobukowski, M. Barysz and J. Leszczynski, Phys. Chem. Chem. Phys., 13, 5703 (2011).
[162]J. M. Lindquist, J. P. Ziegler and J. C. Hemminger, Surf. Sci.,210, 27 (1989).
[163]C. Guimon,; A. Zouiten, A. Bore´ave, G. Pfister-Guillouzo, P. Schulz, F. Fitoussi, C. Quet, J. Chem. Soc., Faraday Trans., 90, 3461 (1994).
[164]S. Yoshimura, S. Chida, E. Sato and N. Kubota, Met. Finish., 84, 39 (1986).
[165]Y. Fukumoto, Y. Kawashima, K. Handa and Y. Hayashi, Met. Finish., 82, 77 (1984).
[166]C. Kollia, Z. Loizos and N. Spyrellis, Surf. Coat. Technol., 45, 155(1991).
[167]S.C. Pang, M.A. Anderson and T.W. Chapman, J. Electrochem. Soc., 147, 444 (2000).
[168]J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater., 22, 2632 (2012).
[169]F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, and Y. Chen, Energ. Environ. Sci., 6, 1623 (2013).
[170]D.W. Wang, F. Li, H.M. Cheng, J. Power Sources,185, 1563 (2008).
[171]W. Yu, W. Lin, X. Shao, Z. Hu, R. Li, D. Yuan, J. Power Sources, 272, 137 (2014).
[172]C.S. Dai, P.Y. Chen, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, T.W. Lin, ACS Appl. Mater. Interfaces,5,12168 (2013).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 27. 許銘珊 (2008),遊客旅遊滿意度之研究-以中國大陸遊客爲例。運動休閒餐旅研究,3(4),22-42。
2. 25. 曹勝雄,李淑如 (2007),GPT服務品質構面與量表之建立:整合旅遊仲介與消費觀點。休閒與遊憩研究,1(1),15-40。
3. 4. 王明元,鄭志富 (2011),台灣觀光發展現況與未來展望。商業現代化學刊,6(1)。
4. 26. 章殷超,鍾國彪 (2003),追求我國健保體制下可靠的醫療服務:由醫師與醫院專業課責之外國經驗看起。臺灣醫學,7(5),718-725。
5. 2. 方震中 (2011),推動「醫療照護關懷」經驗分享-臺大醫院醫護人文關懷計畫,醫療品質雜誌,5(1),9-10。
6. 17. 陳映竹(2006),保健旅遊物美價廉是發展趨勢-渡假兼美容臺灣尚處摸索階段。卓越國際媒體月刊,265,98-101。
7. 22. 徐承毅,段宜祥,蔡進祥,陳昭宇 (2010),以認知服務品質理論探討旅行社服務品質之研究。國立虎尾科技大學學報,29(1),61-74。
8. 林金定、嚴嘉楓、陳美花(2005)。質性研究方法:訪談模式與實施步驟分析。身心障礙研究,第3卷,第2期,P.122-136。
9. 1. 方世榮、張嘉雯 (2004),顧客涉入程度對服務品質與關係品質之干擾效果-以電腦賣場與內部商店為例。中山管理評論,12,755-794。
10. 20. 陳世圯 (2008),積極規劃三通 繁榮觀光產業。國家政策論壇,1(5)。
11. 18. 陳淑賢,李傳國,何明印 (2008),以模型探討醫療旅遊可能帶動產業關聯價值。產業管理評論,3(1),37-49。
12. 23. 高淑琴,黃崇謙 (2006),影響病人違背醫囑自動出院之因素探討。醫務管理期刊,7(3),287-305。
13. 32. 劉宜君 (2008),醫療觀光發展之探討:論印度經驗。中國行政評論,16(2),111-151。
14. 8. 李弘暉、鍾麗英,「團隊運作過程對團隊績效影響之研究」,人力資源學報,民國88年12月,第11期,頁1-30。
15. 高淑清(2001)。在美華人留學生太太的生活世界:詮釋與反思。本土心理學研究,第16 期 ,P225 – 285。
 
無相關點閱論文