跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李承堯
研究生(外文):Cheng-Yao Lee
論文名稱:丁二烯碸電解液添加劑於鋰鈦氧負極表面鈍化膜生成之探討
論文名稱(外文):Effects of butadiene sulfone on the formation of solid electrolyte interphase in lithium-ion batteries based on Li4Ti5O12 anode materials
指導教授:林正裕林正裕引用關係
指導教授(外文):Jeng-Yu Lin
口試委員:林正裕
口試委員(外文):Jeng-Yu Lin
口試日期:2015-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:87
中文關鍵詞:表面鈍化膜鋰離子電池丁二烯碸電解液添加劑鋰鈦氧
外文關鍵詞:lithium ion batterybutadiene sulfoneelectrolyte additivesolid electrolyte interphaseLi4Ti5O12
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近年來鋰鈦氧(Li4Ti5O12,LTO)因其具有良好的鋰離子嵌入嵌出循環能力和可忽略的體積變化,且其相對於有機電解液還原電位高的放電平台(1.55 V vs. Li+),能避免固態電解質鈍化膜生成在其表面,故具循環壽命和安全性,故已被廣泛地研究作為鋰離子電池之負極材料。然而近期有研究發現當LTO放電至0.01 V vs. Li/Li+時,其表面仍會有固態電解質鈍化膜生成。
於本研究中,於電解液中添加不同濃度之丁二烯碸,以探討其對於LTO表面固態電解質鈍化膜生成及LTO電化學特性之影響。當中以添加0.5wt%丁二烯碸下,LTO電極相較於其它添加濃度下有最好的電化學特性。其原因在於丁二烯碸可幫助固態電解質鈍化膜於LTO表面表速生長,且分佈更緻密,以改善了LTO的電化學穩定。故使用丁二烯碸作為電解液添加劑,可加速穩定LTO電極在低電位下之固態電解質鈍化膜之生長,而提昇其長期充放電穩定性。
In recent years, Li4Ti5O12 (LTO) has been extensively considered as a promising alternative anode material for Li-ion batteries because of its excellent Li-ion intercalation/extraction reversibility and negligible volume change. Moreover, it exhibits a flat discharge platform at 1.55 V (vs. Li+) which is higher than the reduction potential of the most organic electrolytes, thus avoiding solid electrolyte interphase (SEI) film formation on the surface of LTO particles and ensuring a longer cycling life and better safety of the battery. However, the SEI formation on the LTO surface was found when discharged to 0.01 V.
In this study, the electrochemical properties and the SEI formation of electrolyte with different concentrations of butadiene sulfone (BS) on LTO electrodes were studied. According to the results of galvanostatic charge/discharge tests, the LTO electrode charged/discharged in the electrolyte containing 0.5 wt% BS showed the superior electrochemical performance to that in the absence of BS. It was found that the use of BS as an additive can accelerate the growth of SEI film and therefore stabilize the SEI film on the LTO surface, and therefore improve the electrochemical stability of LTO electrodes. Therefore, the introduction of BS as an additive has promising potential application for the improved electrochemical properties of LTO electrodes especially when discharged to low voltage.
Abstract I
摘要 II
Table of Content III
List of Figures VI
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Development of lithium ion battery 3
2.2 The principles of lithium ion batteries 4
2.3 The cathode material of lithium ion batteries 5
2.3.1 LiCoO2 7
2.3.2 LiMn2O4 8
2.3.3 LiFePO4 9
2.4 The anode material of lithium ion batteries 10
2.4.1 Silicon (Si) 12
2.4.2 Metal-sulfide materials 13
2.4.3 Carbon materials 14
2.4.4 Titanium oxide 16
2.5 The SEI film forming on Li4Ti5O12 anode electrode in full cell 21
2.6 The modification of SEI film on anode materials 23
2.6.1 Vinylene carbonate (VC) 23
2.6.2 Butyl sultone (BS) 25
2.6.3 Propane sultone (PS) 26
2.6.4 Prop-1-ene1, 3-sultone (PES) 27
2.7 Object of this study 31
Chapter 3 Experimental 32
3.1 Preparation of samples 32
3.1.1 Sol-gel synthesis of LTO 32
3.1.2 Preparation electrolyte additive solution 33
3.2 Preparation of electrode and coin-cell assembling 34
3.2.1 Preparation of electrode plate 34
3.2.2 Coin-cell assembling 34
3.3 The principle of experimental instruments 35
3.3.1 X-ray Powder diffraction (XRD) 35
3.3.2 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 36
3.3.3 X-ray photoelectron spectroscopy (XPS) 37
3.3.4 Electrochemical impedance spectroscopy (EIS) 38
3.4 Material characterizations 39
3.4.1 X-ray diffraction (XRD) 39
3.4.2 Scanning electron microscope analysis (SEM) 40
3.4.3 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 40
3.4.4 X-ray photoelectron spectroscopy (XPS) 40
3.5 Electrochemical characterizations 40
3.5.1 Charge/discharge test 40
3.5.2 Cyclic voltammetry (CV) 40
3.5.3 Electrochemical impedance spectroscopy (EIS) 41
Chapter 4 Results and discussion 42
4.1Characterizations and electrochemical properties of LTO under 1V 42
4.1.1 Crystal structures and morphology of LTO 42
4.1.2 Charge/discharge tests of LTO electrodes at different cut-off voltage regions 44
4.1.3 Cycling performance of LTO 46
4.1.4 Cyclic voltammetry measurement of LTO 48
4.1.5 ATR-FTIR measurement of LTO 50
4.1.6 XPS analysis of LTO 52
4.2 Characterizations and electrochemical properties of LTO with BS as electrolyte additive 54
4.2.1 Cycling performance of LTO with BS as electrolyte additive 54
4.2.2 Electrochemical impedance spectroscopy analysis of different concentrations BS as additive for LTO 56
4.2.3 Morphology of different concentrations BS as additive on LTO electrode 58
4.2.4 ATR-FTIR measurement of different concentrations BS as additive on LTO electrode 61
4.2.5 XPS analysis of free additive and BS containing LTO electrode 63
Chapter 5 Conclusions 66
References 68


List of Figures
Figure 2-1 Applications of lithium ion batteries. 3
Figure 2-2 A schematic presentation of the most commonly used Li-ion battery based on graphite anodes and LiCoO2 cathodes. 4
Figure 2-3 Theoretical and practical gravimetric energy densities of different cathode materials. 6
Figure 2-4 Crystal structure of layered LiCoO2 cathode materials for lithium ion batteries . 8
Figure 2-5 Crystal structure of spinel LiMn2O4 ( red: Li-ions and blue: Mn-ions) 9
Figure 2-6 Crystal structure of olivineLiFePO4 ( red: Li-ions, blue: Fe-ions and yellow: P-ions) 10
Figure 2-7 Schematic illustration of anode materials for LIBs. 12
Figure 2-8 Three types of carbon. 14
Figure 2-9 (a) The SEI film generation on cathode and anode electrode and (b) Changes at the electrode/electrolyte interface. 16
Figure 2-10 The crystal structure of LTO and schematic for lithium-ion intercalation process of (a) spinel Li4Ti5O12: [Li]8a[]16c[Li1/3Ti5/3]16d[O4]32e and (b) rock-salt Li7Ti5O12 : []8a[Li2]16c[Li1/3Ti5/3]16d[O4]32e. 17
Figure 2-11 (a) CVs of LTO in different voltage range, 0.0-1.1V and 3.0-5.0V, (b) HRTEM images of LTO at discharge to 0V and (c) charge to 5V. 19
Figure 2-12 The crystal structure of LTO and schematic for lithium-ion intercalation process of (a) rock-salt Li7Ti5O12 : []8a[Li2]16c[Li1/3Ti5/3]16d[O4]32e and (b) quasi-rock salt Li9Ti5O12 : [Li2/3]8a[Li2]16c[Li1/3Ti5/3]16d[O4]32e. 19
Figure 2-13 1st, 2nd and 100th discharge curves for the electrode LTO and the charge/discharge range at 0.01-2 V. 20
Figure 2-14 (a) O 1s core peaks and (b) Ti 3s and Li 1s core peaks of the LTO electrode on charge process of LiCoO2/Li4Ti5O12 system. 22
Figure 2-15 SEM images of Si film anodes before and after cycling in different electrolytes: (a) before cycling; (b) after the first cycle in VC-free electrolyte; (c) after the first cycle in VC-containing electrolyte. 24
Figure 2-16 (a) cycle performance and efficiency of Si film anode in VC-containing and VC-free electrolytes; (b) Changes of electro resistance of SEI layer upon cycling in VC-free and VC-containing electrolytes. 24
Figure 2-17 Cycling performance of Li-ion batteries using 1 mol L−1 LiPF6/EC: PC: EMC = 1:1:3 as electrolyte (A) without and (B) with BS. 25
Figure 2-18 EDS of graphite electrodes after the first cycle in 1 mol L−1 LiPF6/EC:PC:EMC = 1:1:3 (A) without and (B) with BS. 26
Figure 2-19 Cyclic voltammetry of graphite electrodes in 1 mol L−1 LiPF6/EC: PC: EMC (1:1:3) (a) without PS and (b) with 1wt% PS, scan rate 0.5mVs−1. 27
Figure 2-20 Cycling performances of LiCoO2/graphite cells in 1.0 M LiPF6/PC–EMC (1:1) electrolytes containing various contents of PS, compared with the electrolyte containing 3 wt% PES. The cells were charge/discharge at 0.1 C in the voltage range: 2.5–4.2 V. 28
Figure 2-21 SEM images of graphite electrodes: (a) before cycling, (b) after the first cycle without additive, (c) with 3wt% PS, (d) with 3wt% PES; (e) EDS of the graphite electrodes with 3wt% PS; (f) with 3wt% PES. 29
Figure 2-22 C 1s, F 1s, O 1s, P 2p and S 2p XPS spectra of fresh graphite anode and cycled in 1.0 M LiPF6/PC–EMC (1:1) without and with additives. 30
Figure 3-1 The detailed synthesis procedure of LTO. 33
Figure 3-2 Preparation electrolyte additive solution. 34
Figure 3-3 The schematic illustration Coin cell assembly. 35
Figure 3-4 The schematic illustration of Bragg diffraction. 36
Figure 3-5 The schematic illustration of XPS measurement principle. 38
Figure 3-6 The schematic illustration of (a) Nyquist plot and (b) equivalent circuit model. 39
Figure 4-1 XRD patterns of the LTO. 43
Figure 4-2 SEM images of different magnifications (a) 5000, (b) 10000 and (c) 50000. 43
Figure 4- 3 Charge/discharge curves of LTO (a) 1.0-2.5V and (b) 0.05-2.5V. 45
Figure 4-4 Results of cycling performance with (a) 1.0-2.5V and (b) 0.05-2.5V. 47
Figure 4-5 Cycle voltammetry curves of (a) 0.0-2.5V and (b) 0.1-1.2V, the irreversible peak appears at 0.7V. 49
Figure 4-6 ATR-FTIR spectra of LTO in before cycle and free additive. 51
Figure 4-7 XPS spectra of before cycle LTO electrode (a) C, (c) O, (e) F, (g) P and after cycle LTO electrode (b) C, (d) O, (f) F, (h) P. 53
Figure 4-8 Results of cycling performance at (a) 0.2C and (b) 1C with different concentration of BS. 55
Figure 4-9 Nyquist plots of the different concentration BS electrodes measured after three consecutive charge/discharge cycles. The inset of Fig. 4-9 is the equivalent circuit used to fit the obtained EIS spectra. 57
Figure 4-10 SEM images of (a) before cycle, (b) free additive , (c) 0.5wt% BS , (d) 1.0wt% BS, (e) 2.0wt% BS and (f) 4.0wt% BS at 0.2C-rate . 59
Figure 4-11 SEM images of (a) free additive , (b) 0.5wt% BS , (c) 1.0wt% BS, (d) 2.0wt% BS and (e) 4.0wt% BS at 0.5C-rate . 60
Figure 4-12 ATR-FTIR spectra of LTO in before cycle and different concentration BS. 61
Figure 4-13 XPS spectra of free additive LTO electrode (a) C, (c) O, (e) F, (g) P, (i) S and 0.5wt% BS as electrolyte additive on LTO electrode (b) C, (d) O, (f) F, (h) P, (j) S. 65


List of Tables
Table 2-1 The performances of common cathode materials. 6
Table 2-2 Different components of Li-Si binary compound. 13
Table 4-1 The assignments of the characteristic bands observed in FTIR spectra shown in Fig. 4-6. 51
Table 4-2 Parameters of electrodes obtained from EIS measurement. 57
Table 4-3 The assignments of the characteristic bands observed in FTIR spectra shown in Fig. 4-12. 62
1.J. B. Goodenough, Y. Kim, Chem. Mater., 22 (2010) 587.
2.J. M. Tarascon, M. Armand, Nature, 414 (2001) 359.
3.A. Manthiram, A. V. Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci., 1 (2008) 621.
4.K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, J. Phys. Chem. Lett., 1 (2010) 1176.
5.N. A. Kaskhedikar, J. Maier, Adv. Mater., 21 (2009) 2664.
6.M. S. Whittingham, Chemical Reviews, 104 (2004) 4271.
7.S. Flandrois, B. Simon, Carbon, 37 (1999) 165.
8.P. G. Balakrishnan, R. Ramesh, T. P. Kumar, J. Power Sources, 155 (2006) 401.
9.X. Li, C. Wang, J. Mater. Chem., A1 (2013) 165.
10.S. K. Martha, O. Haik, V. Borgel, E. Zinigrad, I. Exnar, T. Drezen, J. H. Miners, D. Aurbach, J. Electrochem. Soc., 158 (2011) A 790.
11.C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, M. M. Thackeray, J. Electrochem. Soc., 148 (2001) A 102.
12.Ting-Feng Yi, J. Shu, Yan-Rong Zhua, Xiao-Dong Zhu, Cai-Bo Yue, An-Na Zhou, and Rong-Sun Zhu, Electrochim. Acta. 54 (2009) 7464–7470.
13.W. Lu, I. Belharouak, J. Liu, and K. Amine, J. Electrochem. Soc. 154 (2007) 114.
14.Jie Shu, J. Electrochem. Soc. 11 (2008) A238.
15.H. Ge, N. Li, D. Li, C. Dai, D. Wang, Electrochemistry Communications 10 (2008) 719–722.
16.X.L. Yao, S. Xie, H.Q. Nian, C.H. Chen, J. Alloys and Compounds 465 (2008) 375–379.
17.J.O. Besenhard, M.W. Wagner, M. Winter, A.D. Jannakoudakis, P.D. Jannakoudakis, E. Theodoridou, J. Power Sources 43–44 (1993) 413.
18.J.D. Besenhand, M. Winter, J. Yang, W. Biberacher, J. Power Sources 54 (1995) 228.
19.Y. Ein-Eli, S.R. Thomas, V.R. Koch, J. Electrochem. Soc. 142 (1997) 1159.
20.X. Xiao, P. Lu, D. Ahn, Adv. Materials 23 (2011) 3911.
21.Y. He, X. Yu, Y. Wang, H. Li, X. Huang, Adv. Materials 43 (2011) 4938.
22.J. Liua, X. Li, M. Caib, R. Li, X. Sun, Electrochimica Acta 93 (2013) 195– 201.
23.W. Li, X. Li, M. Chena, Z. Xie, J. Zhang,S. Dong, M. Qu, Electrochimica Acta 139 (2014) 104–110
24.K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang, M. Yoshio, Electrochim. Acta 49 (2004) 4613.
25.H. C. Wu, C. Y. Su, D. T. Shieh, M.-H. Yang, N. L. Wu, Electrochem. Solid-State Lett. 9 (2006) A537.
26.D. Aurbach, J.S. Gnanaraj, W. Geissler, M. Schmidt, J. Electrochem. Soc. 151 (2004) A23.
27.M.Q. Xu, W.S. Li, X. X. Zuo, J.S. Liu, X. Xu, J. Power Sources 174 (2007) 705.
28.M. Xu, W. Li, B. L. Lucht, J. Power Sources 193 (2009) 804.
29.H. Ota, K. Shima, M. Ue, J. Yamaki, Electrochimica Acta 49 (2004) 565.
30.L. Chen, K. Wang, X. Xie, J. Xie, J. Power Sources 174 (2007) 538–543.
31.M. S. Whittingham, Science, 192 (1976) 1126.
32.K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Materials Research Bulletin 15 (6) 783.
33.R. Yazami, P. Touzain, J. Power Sources 9 (3) 365.
34.M. K. Song, S. Park, Faisal M. Alamgir, J. Cho, M. Liu, Mater. Sci. Eng., R 72 (2011) 203.
35.B. Xu, D. Qian, Z. Wang, Y.S. Meng, Mater. Sci. Eng., R 73 (2012) 51.
36.J. N. Reimers, J. R. Dahn, J. Eletrochem. Soc., 139 (1992) 2091.
37.R. Pitchai, V. Thavasai, S.G. Mhaisalkar, S. Ramakrishna, J. Mater. Chem., 21 (2011) 11040.
38.M. Antaya, K. Cearns, J. Preston, J. Reimers, J. Dahn, J. applied physics, 76 (1994) 2799.
39.M. M. Thackeray, Y. T. Kim, H. H. Li, Y. Shao-Horn, Chem. Mater., 20 (2008) 4936.
40.D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, R. Oesten, J. Power Sources, 81 (1999) 472.
41.A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, J. Eletrochem. Soc., 144 (1997) 1609.
42.D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett., 7 (2004) A30.
43.C.A.J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Meter. 20 (2008) 5907.
44.K. Zhuo, M. G. Jeong, C. H. Chung, J. Power Sources, 244 (2013) 601.
45.C. H. Lai, M. Y. Lu, L. J. Chen, J. Mater. Chem., 22 (2012) 19.
46.B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, R. P. Raffaelle, Energy Environ. Sci., 2 (2009) 638.
47.C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, M. Endo, Adv. Funct. Mater., 16 (2006) 2393.
48.J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, Phys. Chem. Chem. Phys., 13 (2011) 15384.
49.J. Yang, Y. Takeda, N. Imanishi, C. Capoglia, J. Y. Xie, O. Yamamoto, Solid State Ionics, 152-153 (2002) 125.
50.M. Ge, J. Rong, X. Fang, C. Zhou, Nano Lett., 12 (2012) 2318.
51.S. Boyanov, K. Anou, C. Villevieille, M. Pelosi, D. Zitoun, L. Monconduit, Ionics, 14 (2008) 183.
52.S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia, J. Power Sources, 257 (2014) 421.
53.M. Osiak, J. Materials Chemistry A2, 25 (2014) 9433
54.B. A. Boukamp, G. C. Lesh, R. A. Hugings, J. Eletrochem. Soc., 128 (1981) 725.
55.B. Wang, ACS Nano, 7 (2013) 1437.
56.X. Ji, K. T. Lee, L. F. Nazar, Nat Mater, 8 (2009) 500.
57.E. Benavente, G. Gonzalez, Materials Reasearch Bulletin, 32 (1997) 709.
58.L. Chen, L. L. Shaw, J. Power Sources, 267 (2014) 770.
59.O. Mao, R. A. Dunlap, J. R. Dahn, J. Electrochem. Soc., 146 (1999) 405.
60.D. Wang, N. Ding, X. H.Song, C.H. Chen, J. Mater. Sci., 44 (2009) 198
61.T. F. Yi, Y .Xie, Y. R. Zhu, R. S. Zhu, H. Shen, J. Power Sources, 222 (2013) 448.
62.T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu, H. B. Qiao, J. Phys. Chem. Solids, 71 (2010) 1236.
63.S. Huang, Z. Wen, X. Zhu, Z. Gu, Electrochem. Commun., 6 (2004) 1093.
64.S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang, Z. Tang, Mater. Chem. Phys., 123 (2010) 510.
65.H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian, R. Wang, Electrochim. Acta, 53 (2008) 7079.
66.T. F. Yi, Y. Xie, L. J. Jiang, J. Shu, C. B. Yue, A. N. Zhou, M. F. Ye, RSC Adv, 2 (2012) 3541
67.C. T. Hsieh, B. S. Chang, J. Y. Lin, R. S. Juang, J. Alloys Compd., 513 (2012) 393.
68.T. Zhou, Y. Lin, G. Zhao, Y. Huang, H. Lai, J. Li, Z. Huang, S. Wu, Int. J. Electrochem. Sci., 8 (2013) 1316.
69.X. Li, M. Qu, Y. Huai, Z. Yu, Electrochim. Acta, 55 (2010) 2978.
70.H. G. Jung, J. Kim, B. Scrosati, Y. K. Sun, J. Power Sources, 196 (2011) 7763.
71.L. El Ouatani, R. Dedryvère, C. Siret, P. Biensan and D. Gonbeau, J. Electrochemical Society, 156 (2009) A468.
72.B. Li, M. Xu, B. Li, Y. Liu, L. Yang, W. Li, S. Hu, Electrochimica Acta 105 (2013) 1.
73.H. P. Myers, Introductory Solid State Physics., ISBN 0-7484-0660-3.
74.M. Lu, H. Cheng, Y. Yang, Electrochimica Acta, 53 (2008) 3539.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文