(3.237.178.91) 您好!臺灣時間:2021/03/07 00:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林睿達
研究生(外文):Ruei-Da Lin
論文名稱:以不同氮源對米根黴生產L型乳酸的影響
論文名稱(外文):Effect of Various Nitrogen Sources on L-(+)-Lactic Acid Production by Rhizopus oryzae
指導教授:許垤棋
指導教授(外文):Dey-Chyi Sheu
口試委員:許垤棋
口試委員(外文):Dey-Chyi Sheu
口試日期:2015-01-20
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:48
中文關鍵詞:乳酸米根黴氮源尿素
外文關鍵詞:Rhizopus oryzaelactic acidnitrogen sourcesurea
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討利用米根黴發酵生產L-乳酸時,不同氮源對乳酸生產的影響,藉以提升乳酸之生產效率。利用多種不同氮源進行液態發酵比較乳酸產量的差異,發現以尿素作為氮源時,菌體及乳酸的產率為最佳狀態。研究結果顯示,實驗尿素的濃度低於0.6 g/L時,形成大的菌絲團塊,而當尿素的濃度高於0.8 g/L時,產生小的菌絲團塊。然而當每日加入濃度0.05 g/L尿素發酵後,會形成綿絮狀的菌絲,並生成乳酸,最高可達到 84 g/L,接近70%的產率。研究顯示米根黴發酵生產乳酸的產率取決於(1)尿素的濃度以及添加的模式(2)發酵時米根黴形成的菌絲形態。
Among various nitrogen sources used in submerged cultures of Rhizopus oryzae for lactic production in this work, urea proved the best in terms of not only biomass formation but also lactic acid production. At urea concentrations lower than 0.6 g/L, large mycelial clumps formed. And at urea concentration higher than 0.8 g/L, small pellets were obtained. However, when 0.05 g/L urea were added daily, cultures exhibited floc-morphology and the highest lactic acid concentration of 84 g/L with the yield of 0.7 was obtained. Lactic acid production was affected by (1) the concentration and addition mode of urea, and (2) mycelia morphology.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅵ
第一章 緒論 1
1.1 研究動機與目的 1
1.2 乳酸的簡介 3
1.2.1 乳酸的組成和化學結構 3
1.2.2 乳酸的性質及生理功能 6
1.2.3 乳酸的應用 8
1.2.4 聚乳酸應用 12
1.2.5 乳酸的生產技術 14
第二章 實驗材料與方法 16
2.1 實驗材料 16
2.1.1 菌種來源 16
2.1.2 菌種特性 16
2.1.3 菌種生長培養基 16
2.2 實驗設備 17
2.2.1 一般設備 17
2.2.2 分析藥品與設備 18
2.3 實驗方法 19
2.3.1 菌體培養程序 19
2.4 實驗與分析方法 21
第三章 實驗結果與討論 22
3.1 不同濃度之硫酸銨和碳酸鈣對
米根黴產生乳酸的影響 22
3.2 不同氮源對乳酸產量之影響 24
3.3 尿素濃度對菌絲體型態之影響 26
第四章 結論 32
參考文獻 33

圖目錄

圖 1-1 乳酸結構式 3
圖 1-2 乳酸與科里循環 7
圖 1-3 超薄聚乳酸奈米片 10
圖 1-4 全球乳酸需求比例圖 11
圖 1-5 全球每年聚乳酸市場規模分析 11
圖 1-6 聚乳酸的循環流程 13
圖 1-7 含木質素的農業廢棄物圖 15
圖 2-1 米根黴以酵母萃取物培養時,添加 CaCO3的差異 20
圖 3-1 米根黴沉降培養過程中,尿素濃度對乳酸生成量、生物質產量、菌絲體型態的變化 27
圖 3-2 米根黴沉降培養過程中,每日加入尿素時,對乳酸生成量、生物質產量、菌絲體型態的變化 28
圖3-3尿素濃度低於 0.6 g/L,米根黴菌絲體形成體積大的團塊 29
圖3-4 尿素濃度高於 0.8 g/L,米根黴菌絲體形成體積較小的團塊 30
圖 3-5 每日添加尿素濃度 0.05~0.6 g/L,形成棉絮狀的菌絲體團塊 31

表目錄

表一、乳酸光學異構物的特性 4
表二、乳酸於食品中的利用 5
表三、 加入不同濃度的(NH4)2SO4 和 CaCO3 對米根黴產生乳酸的影響 23
表四、 加入不同氮源對米根黴乳酸產量的變化 25
[1] David L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry Fourth Edition. W.H. Freeman and Company,
ISBN-13: 978-0716743392. p.543 (2005)
[2] Litchfield, J. H. Microbiological production of lactic acid. Advance in Applied Microbiology. 42: 45–95. (1996)
[3] S. P. Tsai, R. D. Coleman, S. H. Moon, K. A. Schneider, C. Sanville Millard. Strain screening and development for industrial lactic acid fermentation,. Applied Biochemistry and Biotechnology. 39: 323–335. (1993)
[4] Bikram P. Upadhyaya, Linda C. DeVeaux,Lew P. Christopher, Metabolic engineering as a tool for enhanced lactic acid production, Trends in Biotechnology. 32: 637–644. (2014)
[5] Se-Kwon Moon, Young-Jung Wee, Gi-Wook Choi, A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. Journal of Bioscience and Bioengineering. 114: 155–159. (2012)
[6] Kosakai Y, Park YS, Okabe M. Enhancement of L-(+)-lactic Acid production using mycelial flocs of Rhizopus oryzae. Biotechnol Bioeng. 55: 461–470. (1996)
[7] Yin P., Yahiro K., Ishigaki T., Park Y., Okabe M.
L-(+)-Lactic acid production by repeated batch culture of Rhizopus oryzae in airilift bioreactor. J. Ferment. Bioeng. 85: 96–100. (1998)
[8] Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM. L-(+)-Lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem. Eng. Sci. 58: 785–791. (2003)
[9] Park EY, Kosakai Y, Okabe M. Efficient production of L-(+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol. Prog. 14: 699–704. (1998)
[10] Karin Hofvendahla,Barbel Hahn–Hagerdal. Factors affecting the fermentative lactic acid production from renewable resources,Enzyme and Microbial Technology. 26: 87–107. (2000)
[11] Longacre A, Reimers JM, Gannon JE, and Wright BE.
Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields. Fungal Genet. Biol. 21:30–39. (1997)
[12] Muhammad Irshad, Tayyba Ghaffar, Zahid Anwar.
Recent trends in lactic acid biotechnology: A brief review on production to purification. Journal of Radiation Research and Applied Sciences. 7 : 222-229 (2014)
[13] Rafael A. Auras, Loong-Tak Lim, Susan E. M. Selke, Hideto Tsuji. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Sons, ISBN: 978-0-470-29366-9 (2011)
[14] Chao Gaoa,Cuiqing Maa, Ping Xub, Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances. 29: 930–939. (2011)
[15] 李慶國、陳麗香、孔皓瑩, 化妝品概論與應用,第二章, 五南圖書出版有限公司,ISBN-13:9789571166315
[16] U.S. Environmental Protection Agency Office of Pesticide Programs: L-Lactic Acid, Biopesticides Registration Action Document. Biopesticides and Pollution Prevention Division, (2009)
[17] Y. Okamura, K. Kabata, M. Kinoshita, D. Saito, S. Takeoka, Free-Standing Biodegradable Poly(lactic acid) Nanosheet for Sealing Operations in Surgery. Adv. Mater. 21: 4388-4392. (2009)
[18] Y. Okamura, K. Kabata, M. Kinoshita, H. Miyazaki, A. Saito,T. Fujie, S. Ohtsubo , D. Saitoh , S. Takeoka, Fragmentation of Poly(lactic acid) Nanosheets and Patchwork Treatment for Burn Wounds. Adv. Mater. 25 : 545-551. (2013)
[19] Muhammad Ali Abdel-Rahman, Yukihiro Tashiro, Kenji Sonomoto. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances. 31 : 877-902. (2013)
[20] 朱惟君。化作春泥更護花─神奇的「生物可分解塑膠」,環保署資源回收月刊。(2001)
[21] Ji Zhao, Reza Iranpour, Xinyong Li and Bo Jin Regulation and Control of Rhizopus oryzae on Lactic Acid Production from Kitchen Refuse. Advanced Materials Research.730 : 2718–2722. (2013)
[22] Guerrick Vially, Remy Marchal, Nathalie Guilbert. L(+) Lactate production from carbohydrates and lignocellulosic materials by Rhizopus oryzae UMIP 4.77, World Journal of Microbiology and Biotechnology. 26: 607–614. (2010)

[23] Ali Oğuz Buyukkilecia, Haluk Hamamcıb, Meral Yucelc, Lactate and Ethanol Productions by Rhizopus oryzae ATCC 9363 and Activities of Related Pyruvate Branch Point Enzymes. Journal of Bioscience and Bioengineering. 102: 464–466. (2006)
[24] YQ Fu, LF Yin, R Jiang, Effects of Calcium on the Morphology of Rhizopus oryzae and L-lactic Acid Production. Advances in Applied Biotechnology. 233–245. (2014)
[25] Y Zhou, J Du, G Tsao. Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess and Biosystems Engineering. 25: 179–181. (2002)
[26] Ying Zhou, Jianxin Du, George T. Tsao. Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Applied Biochemistry and Biotechnology. 86: 779–789. (2000)
[27] Mei-Ching Yua, Ron-Chi Wanga, Chung-Yih Wangb, Kow-Jen Duanb, Dey-Chyi Sheu. Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae. Journal of the Chinese Institute of Chemical Engineers. 38: 223–228. (2007)
[28] Pochanavanich P., Suntornsuk W. Fungal chitosan production and its characterization. Lett. Appl. Micrbiol. 35:17–21. (2002)
[29] Borgia PT, Iartchouk N, Riggle PJ, Winter KR, Koltin Y, Bulawa CE. The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet. Biol. 20:193–203. (1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔