跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳星宇
研究生(外文):Shing-Yu Chen
論文名稱:D型胺基酸氧化酶利用仿生薄膜固定化及消旋甲硫胺酸分離之應用
論文名稱(外文):Immobilization of D-amino acid oxidase via a biomimetic film and its application for the resolution of D/L-methionine
指導教授:游吉陽
指導教授(外文):Chi-Yang Yu
口試委員:游吉陽
口試委員(外文):Chi-Yang Yu
口試日期:2015-07-21
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:134
中文關鍵詞:磁性奈米粒子D型胺基酸氧化酶聚多巴胺
外文關鍵詞:polydopaminemagnetic nanoparticlesD-amino acid oxidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究以聚多巴胺進行磁性奈米粒子(MNP)的表面修飾(PD-MNP),應用於Trigonopsis variabilis D型胺基酸氧化酶(TvDAO)的固定化。TvDAO 最適 pH 為8.5,而MNP-TvDAO及PD-MNP-TvDAO均為8。PD-MNP-TvDAO之pH穩定性較 MNP-TvDAO為佳。TvDAO、MNP-TvDAO及 PD-MNP-TvDAO最適溫度分別為40、50和55℃。MNP-TvDAO重複使用四次其活性降至41%,而 PD-MNP-TvDAO使用至第五次仍保有45%之活性。於4℃下儲存10天後,TvDAO、MNP-TvDAO及 PD-MNP-TvDAO之活性分別為33、80及50%。利用固定相TvDAO將D/L-Met中D-Met 轉化成高價值之4-methylthio-2-oxobutyric acid(MTOB)。若不添加catalase,MNP-TvDAO及PD-MNP-TvDAO生成之MTOB大部分被H2O2自發性氧化形成3-methylthiopropionic acid。而添加1600U之catalase,無論使用MNP-TvDAO或PD-MNP-TvDAO反應10min後MTOB轉化率均能達100%。
In this study, magnetic nanoparticles (MNP) were modified with
polydopamine to form polydopamine-coated MNP (PD-MNP), and both
supports were used for the immobilization of D-amino acid oxidase from Trigonopsis variabilis (TvDAO). The optimal pH for TvDAO was 8.5; both
MNP-TvDAO and PD-MNP-TvDAO had an optimal pH of 8.
PD-MNP-TvDAO had better pH stability than MNP-TvDAO. The optimal temperatures for TvDAO, MNP-TvDAO and PD-MNP-TvDAO were 40, 50 and 55℃, respectively. The activity of MNP-TvDAO decreased to 41% after it was reused four times, while that of PD-MNP-TvDAO retained 45% of initial activity after reused five times. After 10 d of storage at 4℃, the residual activities of TvDAO, MNP-TvDAO and PD-MNP-TvDAO were 33, 80 and 50%, respectively. Immobilized TvDAO was applied to converting D-Met in a mixture D/L-Met to highly valuable 4-methylthio-2-oxobutyric acid (MTOB). Without the addition of catalase, most MTOB produced by
MNP-TvDAO or PD-MNP-TvDAO was spontaneously oxidized to 3-methylthiopropionic acid by H 2 O 2 . With the addition of 1600U of catalase, the conversion of D-Met to MTOB reached 100% after 10 min of reaction, regardless which form of immobilized enzyme was used.
ACKNOWLEDGEMENTS I
ABSTRACT II
中文摘要 IV
TABLE OF CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES IX
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND 3
2.1 D-Amino acid oxidase 3
2.1.1 Catalytic reaction 3
2.1.2 Sources and biological roles 6
2.1.3 Protein structure 10
2.1.4 Substrate specificity 15
2.1.5 Application 16
2.2 Immobilization of D-amino acid oxidase 21
2.3 Magnetic nanoparticles 24
2.3.1 Methods of synthesis 24
2.3.2 Advantages of magnetic nanoparticles 25
2.3.3 Other applications of magnetic nanoparticles 27
2.4 Modification of magnetic nanoparticles 28
2.4.1 Purpose of modification 28
2.4.2 Modification with surface-capping methods 30
2.4.3 Modification with polydopamine 31
CHAPTER 3 MATERIALS AND METHODS 37
3.1 Experimental design 37
3.2 Expression of TvDAO in E. coli 38
3.3 Purification of TvDAO 39
3.4 DAO activity assay by hydrogen peroxide production 40
3.5 DAO activity assay by pyruvate production 41
3.6 Determination of TvDAO concentration 42
3.7 Immobilization of DAO 44
3.7.1 Preparation of Fe3O4 magnetic nanoparticles 44
3.7.2 Modification of MNP with polydopamine 45
3.7.3 Characterization of supports 46
3.7.4 Immobilization of DAO 47
3.7.5 Estimate the binding efficiency 47
3.8 Determination of biochemical characteristics 48
3.8.1 Kinetic analysis 48
3.8.2 Effect of pH on activity and stability 48
3.8.3 Effect of temperature on activity and stability 49
3.8.4 Oxidative stability against hydrogen peroxide 49
3.8.5 Storage stability 50
3.8.6 Reusability 50
3.9 Bioconversion of D-Met 51
3.9.1 HPLC analysis 51
3.9.2 Effect of catalase addition on bioconversion of D-Met 53
3.9.3 Effect of time on bioconversion of D-Met 53
3.9.4 Effect of the amount of TvDAO on bioconversion 54
3.9.5 Effect of the amount of catalase on bioconversion 54
3.9.6 Reusability of immobilized TvDAO 54
CHAPTER 4 RESULTS AND DISCUSSIONS 56
4.1 Characterization of magnetic nanoparticles 56
4.2 Effect of preparation conditions on binding efficiency and activity 61
4.3 Kinetic analysis 65
4.4 Effect of pH on activity and stability 71
4.5 Effect of temperature on activity and stability 74
4.6 Oxidative stability against hydrogen peroxide 77
4.7 Storage stability 80
4.8 Reusability 82
4.9 Effect of catalase addition on bioconversion of D-Met 84
4.10 Effect of time on bioconversion of D-Met 86
4.11 Effect of amount of immobilized TvDAO on bioconversion of D-Met 88
4.12 Effect of amount of catalase on bioconversion of D-Met 90
4.13 Reusability of immobilized TvDAO 92
CHAPTER 5 CONCLUSIONS 94
REFERENCE 96
APPENDIX 114
1.Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cellular and Molecular Life Sciences. 2007; 64: 1373-94.
2.Krebs HA. Metabolism of amino acids: deamination of amino-acids. Biochemical Journal. 1935; 29: 1620.
3.Curti B, Ronchi S, Branzoli U, Ferri G, Williams Jr CH. Improved purification, amino acid analysis and molecular weight of homogeneous D-amino acid oxidase from pig kidney. Biochimica et Biophysica Acta (BBA) - Enzymology. 1973; 327: 266-73.
4.Simonetta MP, Vanoni MA, Casalin P. Purification and properties of D-amino acid oxidase, an inducible flavoenzyme from Rhodotorula gracilis. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1987; 914: 136-42.
5.Pollegioni L, Buto S, Tischer W, Ghisla S, Pilone M. Characterization of D-amino acid oxidase from Trigonopsis variabilis. Biochemistry and Molecular Biology International. 1993; 31: 709-17.
6.Pollegioni L, Caldinelli L, Molla G, Sacchi S, Pilone MS. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources. Biotechnology Progress. 2004; 20: 467-73.
7.Pilone M. D-amino acid oxidase: new findings. Cellular and Molecular Life Sciences. 2000; 57: 1732-47.
8.Mattevi A, Vanoni MA, Curti B. Structure of D-amino acid oxidase: new insights from an old enzyme. Current Opinion in Structural Biology. 1997; 7: 804-10.
9.Cancio I, Cajaraville MP. Histochemistry of oxidases in several tissues of bivalve molluscs. Cell biology international. 1997; 21: 575-84.
10.Sarower MG, Matsui T, Abe H. Distribution and characteristics of D-amino acid and D-aspartate oxidases in fish tissues. Journal of Experimental Zoology Part A: Comparative Experimental Biology. 2003; 295: 151-9.
11.Momoi K, Fukui K, Watanabe F, Miyake Y. Molecular cloning and sequence analysis of cDNA encoding human kidney D-amino acid oxidase. FEBS letters. 1988; 238: 180-4.
12.Geueke B, Weckbecker A, Hummel W. Overproduction and characterization of a recombinant D-amino acid oxidase from Arthrobacter protophormiae. Applied Microbiology and Biotechnology. 2007; 74: 1240-7.
13.Hamilton GA, Buckthal DJ, Mortensen RM, Zerby KW. Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian D-amino acid oxidase. Proceedings of the National Academy of Sciences. 1979; 76: 2625-9.
14.Skorczynski SS, Mastro AM, Hamilton GA. Oxalyl thiolester concentrations decreased in lectin and phorbol ester-stimulated lymphocytes. The FASEB Journal. 1989; 3: 2415-9.
15.Williams RE, Lock EA. Sodium benzoate attenuates D-serine induced nephrotoxicity in the rat. Toxicology. 2005; 207: 35-48.
16.Maekawa M, Okamura T, Kasai N, Hori Y, Summer KH, Konno R. D-amino acid oxidase is involved in D-serine-induced nephrotoxicity. Chemical Research in Toxicology. 2005; 18: 1678-82.
17.Hashimoto A, Yoshikawa M, Niwa A, Konno R. Mice lacking D-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Research. 2005; 1033: 210-5.
18.Konno R, Yasumura Y. Mouse mutant deficient in D-amino acid oxidase activity. Genetics. 1983; 103: 277-85.
19.Sulter G, Van der Klei I, Harder W, Veenhuis M. Assembly of amine oxidase and D-amino acid oxidase in the cytosol of peroxisome‐deficient mutants of the yeast Hansenula polymorpha during growth of cells on glucose in the presence of primary amines or D-alanine as the sole nitrogen source. Yeast. 1990; 6: 501-9.
20.Sakai Y, Yurimoto H, Matsuo H, Kato N. Regulation of peroxisomal proteins and organelle proliferation by multiple carbon sources in the methylotrophic yeast, Candida boidinii. Yeast. 1998; 14: 1175-87.
21.Molla G, Motteran L, Piubelli L, Pilone MS, Pollegioni L. Regulation of D-amino acid oxidase expression in the yeast Rhodotorula gracilis. Yeast. 2003; 20: 1061-9.
22.Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte A, Tullius M, Kovalenko S, Van Den Bogaert A, Maier W. Examination of G72 and D-amino acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry. 2004; 9: 203-7.
23.Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences. 2002; 99: 13675-80.
24.Burnet P, Eastwood S, Bristow G, Godlewska B, Sikka P, Walker M, Harrison P. D-amino acid oxidase (DAO) activity and expression are increased in schizophrenia. Molecular Psychiatry. 2008; 13: 658.
25.Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophrenia Research. 2008; 101: 76-83.
26.Cancio I, Ibabe A, P. Cajaraville M. Seasonal variation of peroxisomal enzyme activities and peroxisomal structure in mussels Mytilus galloprovincialis and its relationship with the lipid content. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 1999; 123: 135-44.
27.Cancio I, Orbea A, Völkl A, Fahimi HD, Cajaraville MP. Induction of peroxisomal oxidases in mussels: comparison of effects of lubricant oil and benzo(a)pyrene with two typical peroxisome proliferators on peroxisome structure and function in Mytilus galloprovincialis. Toxicology and Applied Pharmacology. 1998; 149: 64-72.
28.Jules RS, Setlik W, Kennard J, Holtzman E. Peroxisomes in the head of Drosophila melanogaster. Experimental Eye Research. 1990; 51: 607-17.
29.Jules RS, Kennard J, Setlik W, Holtzman E. Peroxisomal oxidation of thiazolidine carboxylates in firefly fat body, frog retina, and rat liver and kidney. European Journal of Cell Biology. 1991; 55: 94-103.
30.Brachet P, Puigserver A. Regional differences for the D-amino acid oxidase-catalysed oxidation of D-methionine in chicken small intestine. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1992; 101: 509-11.
31.Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP, Ealick SE. Structural and mechanistic studies on thio, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis†,‡. Biochemistry. 2003; 42: 2971-81.
32.Mörtl M, Diederichs K, Welte W, Molla G, Motteran L, Andriolo G, Pilone MS, Pollegioni L. Structure-function correlation in glycine oxidase from Bacillus subtilis. Journal of Biological Chemistry. 2004; 279: 29718-27.
33.Kubícek Pranz E, Röhr M. D-amino acid oxidase from the yeast Trigonopsis variabilis. Journal of Applied Biochemistry. 1985; 7: 104-13.
34.Kishore G, Sugumaran M, Vaidyanathan C. Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger. Journal of Bacteriology. 1976; 128: 182-91.
35.Isogai T, Ono H, Ishitani Y, Kojo H, Ueda Y, Kohsaka M. Structure and expression of cDNA for D-amino acid oxidase active against cephalosporin C from Fusarium solani. Journal of Biochemistry. 1990; 108: 1063-9.
36.Ohnishi E, Macleod H, Horowitz N. Mutants of Neurospora deficient in D-amino acid oxidase. Journal of Biological Chemistry. 1962; 237: 138-42.
37.Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS. Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Applied Microbiology and Biotechnology. 2008; 78: 1-16.
38.Pilone MS, Pollegioni L. D-amino acid oxidase as an industrial biocatalyst. Biocatalysis and Biotransformation. 2002; 20: 145-59.
39.Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Pollegioni L. Characterization of human D-amino acid oxidase. FEBS letters. 2006; 580: 2358-64.
40.Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S. The x-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proceedings of the National Academy of Sciences. 2000; 97: 12463-8.
41.Sacchi S, Lorenzi S, Molla G, Pilone MS, Rossetti C, Pollegioni L. Engineering the substrate specificity of D-amino acid oxidase. Journal of Biological Chemistry. 2002; 277: 27510-6.
42.Caligiuri A, D'Arrigo P, Rosini E, Tessaro D, Molla G, Servi S, Pollegioni L. Enzymatic conversion of unnatural amino acids by yeast D-amino acid oxidase. Advanced Synthesis and Catalysis. 2006; 348: 2183-90.
43.Betancor L, Hidalgo A, Fernández‐Lorente G, Mateo C, Rodríguez V, Fuentes M, López‐Gallego F, Fernández‐Lafuente R, Guisan JM. Use of physicochemical tools to determine the choice of optimal enzyme: stabilization of D-amino acid oxidase. Biotechnology Progress. 2003; 19: 784-8.
44.Pollegioni L, Lorenzi S, Rosini E, Marcone GL, Molla G, Verga R, Cabri W, Pilone MS. Evolution of an acylase active on cephalosporin C. Protein Science. 2005; 14: 3064-76.
45.Sacchi S, Rosini E, Caldinelli L, Pollegioni L. Biosensors for D-amino acid detection. In: Pollegioni L, Servi S, editors. Unnatural Amino Acids: Humana Press; 2012. p. 313-24.
46.Li B, Zhang Z. Chemiluminescence flow biosensor for determination of total D-amino acid in serum with immobilized reagents. Sensors and Actuators B: Chemical. 2000; 69: 70-4.
47.Brodelius P, Nilsson K, Mosbach K. Production of α-keto acids Part I. Immobilized cells of Trigonopsis variabilis containing D-amino acid oxidase. Applied Biochemistry and Biotechnology. 1981; 6: 293-307.
48.Fernández-Lafuente R, Rodriguez V, Guisán JM. The coimmobilization of D-amino acid oxidase and catalase enables the quantitative transformation of D-amino acids (D-phenylalanine) into α-keto acids (phenylpyruvic acid). Enzyme and Microbial Technology. 1998; 23: 28-33.
49.Fang J, Nakamura H, Iyer A. Tumor-targeted induction of oxystress for cancer therapy. Journal of Drug Targeting. 2007; 15: 475-86.
50.Zhao Lz, Chinnadurai G. Incapacitating CtBP to kill cancer. Cell Cycle. 2010; 9: 3645-6.
51.Fischer L, Hörner R, Wagner F. Production of L-amino acids by applying D-amino acid oxidases. Annals of the New York Academy of Sciences. 1995; 750: 415-20.
52.Trost EM, Fischer L. Minimization of by-product formation during D-amino acid oxidase catalyzed racemate resolution of D/L-amino acids. Journal of Molecular Catalysis B: Enzymatic. 2002; 19–20: 189-95.
53.Pollegioni L, Molla G. New biotech applications from evolved D-amino acid oxidases. Trends in Biotechnology. 2011; 29: 276-83.
54.Gisby MF, Mudd EA, Day A. Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. Plant Physiology. 2012; 160: 2219-26.
55.Batalla P, Martín A, López MÁ, González MC, Escarpa A. Enzyme-based microfluidic chip coupled to graphene electrodes for the detection of D-amino acid enantiomer-biomarkers. Analytical Chemistry. 2015; 87: 5074-8.
56.Hsieh HC, Kuan IC, Lee SL, Tien GY, Wang YJ, Yu CY. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles. Biotechnology Letters. 2009; 31: 557-63.
57.López-Gallego F, Betancor L, Mateo C, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisán JM, Fernández-Lafuente R. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology. 2005; 119: 70-5.
58.Wang SJ, Yu CY, Lee CK, Chern MK, Kuan IC. Subunit fusion of two yeast D-amino acid oxidases enhances their thermostability and resistance to H2O2. Biotechnology Letters. 2008; 30: 1415-22.
59.Wang SJ, Yu CY, Kuan IC. Stabilization of native and double D-amino acid oxidases from Rhodosporidium toruloides and Trigonopsis variabilis by immobilization on streptavidin-coated magnetic beads. Biotechnology Letters. 2008; 30: 1973-81.
60.Komarova N, Golubev I, Khoronenkova S, Tishkov V. Engineering of substrate specificity of D-amino acid oxidase from the yeast Trigonopsis variabilis: directed mutagenesis of Phe258 residue. Biochemistry (Moscow). 2012; 77: 1181-9.
61.Kuan IC, Liao RJ, Hsieh HC, Chen KC, Yu CY. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through His-Tag. Journal of Bioscience and Bioengineering. 2008; 105: 110-5.
62.Kuan IC, Wu J-C, Lee SL, Tsai CW, Chuang CA, Yu CY. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by encapsulation in polyallylamine-mediated biomimetic silica. Biochemical Engineering Journal. 2010; 49: 408-13.
63.Kodama RH. Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials. 1999; 200: 359-72.
64.Lu AH, Salabas EeL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007; 46: 1222-44.
65.He J, Huang M, Wang D, Zhang Z, Li G. Magnetic separation techniques in sample preparation for biological analysis: a review. Journal of Pharmaceutical and Biomedical Analysis. 2014; 101: 84-101.
66.Massart R, Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-yield and particle-size control. Journal de Chimie Physique et de Physico-Chimie Biologique. 1987; 84: 967-73.
67.Liu J, Qiao SZ, Hu QH. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011; 7: 425-43.
68.Kim J, Lee J, Na HB, Kim BC, Youn JK, Kwak JH, Moon K, Lee E, Kim J, Park J. A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small. 2005; 1: 1203-7.
69.Zhang Y, Li J, Han D, Zhang H, Liu P, Li C. An efficient resolution of racemic secondary alcohols on magnetically separable biocatalyst. Biochemical and Biophysical Research Communications. 2008; 365: 609-13.
70.Shaw SY, Chen YJ, Ou JJ, Ho L. Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzyme and Microbial Technology. 2006; 39: 1089-95.
71.Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A. 2007; 80: 333-41.
72.Bava A, Gornati R, Cappellini F, Caldinelli L, Pollegioni L, Bernardini G. D-amino acid oxidase-nanoparticle system: a potential novel approach for cancer enzymatic therapy. Nanomedicine. 2013; 8: 1797-806.
73.Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New England Journal of Medicine. 2003; 348: 2491-9.
74.Takafuji M, Ide S, Ihara H, Xu Z. Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chemistry of Materials. 2004; 16: 1977-83.
75.Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse Magnetic Single‐Crystal Ferrite Microspheres. Angewandte Chemie. 2005; 117: 2842-5.
76.Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews. 2009; 38: 2532-42.
77.Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. Journal of the American Chemical Society. 2004; 126: 9938-9.
78.Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R. Functionalization strategies for protease immobilization on magnetic nanoparticles. Advanced Functional Materials. 2010; 20: 1767-77.
79.Lim CW, Lee IS. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today. 2010; 5: 412-34.
80.Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science (New York, NY). 2007; 318: 426-30.
81.Lee H, Scherer NF, Messersmith PB. Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences. 2006; 103: 12999-3003.
82.Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials (Deerfield Beach, Fla). 2009; 21: 431.
83.Ren Y, Rivera JG, He L, Kulkarni H, Lee D-K, Messersmith PB. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology. 2011; 11: 63.
84.Martín M, Salazar P, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL. Preparation of core–shell Fe3O4@ poly (dopamine) magnetic nanoparticles for biosensor construction. Journal of Materials Chemistry B. 2014; 2: 739-46.
85.Hou C, Qi Z, Zhu H. Preparation of core–shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids and Surfaces B: Biointerfaces. 2015; 128: 544-51.
86.張盛原. Rhodosporidium toruloides D型胺基酸氧化酶於磁性奈米粒子的固定化 2013.
87.廖仁傑. 以 His-tag 固定 D-型胺基酸氧化酶之性質探討 2007.
88.Charusheela A, Arvind L. Enzyme catalyzed hydrolysis of esters using reversibly soluble polymer conjugated lipases. Enzyme and Microbial Technology. 2002; 30: 19-25.
89.Huang SH, Liao MH, Chen DH. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnology Progress. 2003; 19: 1095-100.
90.Yu CC, Kuo YY, Liang CF, Chien WT, Wu HT, Chang TC, Jan FD, Lin CC. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjugate Chemistry. 2012; 23: 714-24.
91.Xi ZY, Xu YY, Zhu LP, Wang Y, Zhu BK. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science. 2009; 327: 244-53.
92.de la Mata I, Ramón F, Obregón V, Castillón MP, Acebal C. Effect of hydrogen peroxide on D-amino acid oxidase from Rhodotorula gracilis. Enzyme and Microbial Technology. 2000; 27: 234-9.
93.Fernández-Lafuente R, Rodrı́guez V, Mateo C, Fernández-Lorente G, Arminsen P, Sabuquillo P, Guisán JM. Stabilization of enzymes (D-amino acid oxidase) against hydrogen peroxide via immobilization and post-immobilization techniques. Journal of Molecular Catalysis B: Enzymatic. 1999; 7: 173-9.
94.Lemainque A, Braun J, Goffic F. Influence de la polymérisation de la d‐aminoacide oxidase sur le comportement de l'enzyme immobilisée sur chitosane par fixation covalente. European Journal of Biochemistry. 1988; 174: 171-6.
95.LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nature Medicine. 2005; 11: 1214-21.
96.García-García M, Martínez-Martínez I, Sánchez-Ferrer Á, García-Carmona F. Production of the apoptotic cellular mediator 4-methylthio-2-oxobutyricacid by using an enzymatic stirred tank reactor with in situ product removal. Biotechnology Progress. 2008; 24: 187-91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林弘昌、陳祺祐(2011)。精熟學習策略融入電腦輔助教學應用於國小科學概念改變之研究。教學科技與媒體,97,45-63。
2. 49.吳耀庭、黃曉鳳、溫俊祥,“電漿表面處理在生醫材料上之應用”,工業材料雜誌212期,(2004)
3. 1.闕山璋, “骨科植入物生醫材料及器材”,科儀新知, 63,13(1), 64-71,(1991)
4. [29] 賴冠仁. (1995) 冷陰極電弧電漿沉積之製程技術原理. 科儀新知. 88-95.
5. [1] 邱江明. (1995) 不鏽鋼的種類與特性. 工業材料 第97期. 18-89.
6. 袁媛、許錦芳(2007)。資訊融入教學對國中資源班數學低成就學生學習影響之個案研究。教育科學期刊,7(1),36-57。
7. 張東孟、陳良和(2014)。動作等級與體型對人員學習效果的影響-以東南科大學生為例。管理資訊計算,3(2),1-10。
8. 黃美瑤(2009)。資訊融入問題導向教學策略介入對高中生健康體適能學習態度之研究。體育學報,42(4),87-100。
9. 黃綉媛(2000)。建立卓越的歷史教學新典範:創造思考、合作學習、網路互動與教學支援系統。中學教育學報,7,121-139。
10. 楊凱悌、王子華、邱美虹(2011)。探討互動式電子白板對於不同認知風格國中學生學習效益之影響—以細胞分裂單元為例。課程與教學季刊,14(4),187-208。
11. 楊朝明、周郁軒(2013)。不同認知需求層級與雙關修辭品質對於平面廣告記憶的影響。設計學報,18(1),1-24。
12. 蔣世寶、孫春望(2014)。學生學習背景與情境詞句對境位詮釋的影響。設計學報,19(3),41-62。
13. 蕭顯勝、洪琬諦、簡正杰(2009)。行動地理資訊系統應用於國小鄉土地理教學之研究。地理學報,56,59–81。
14. 薛雅惠(2000)。概念構圖在地理教學的應用。社會科教育研究,5,103–125。
15. 2. 王坤龍 (1993),「Q 方法之簡介」,中國工商學報,第15期,頁287-298.
 
無相關點閱論文