跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐銘鴻
研究生(外文):Ming-Hong Xu
論文名稱:Candida rugosa脂解酶之固定化及其兩階段式合成生質柴油之應用
論文名稱(外文):Immobilization of lipase from Candida rugosa and its application for synthesis of biodiesel in a two-step process
指導教授:游吉陽
指導教授(外文):Chi-Yang Yu
口試委員:游吉陽
口試委員(外文):Chi-Yang Yu
口試日期:2015-07-21
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:118
中文關鍵詞:脂解酶固定化生質柴油吸附法填充床反應器
外文關鍵詞:packed-bed reactorlipaseimmobilizationbiodieseladsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將Candida rugosa脂解酶固定於聚苯乙烯-二乙烯苯並以兩階段式反應將廢食用油轉化為生質柴油。脂解酶經固定化後在溫度及弱酸性pH下之穩定性皆有改善,隨後用於水解廢食用油成為脂肪酸,並利用反應曲面法-中心混成設計實驗探討溫度、pH、攪拌速率、異辛烷/廢食用油體積比對水解反應之影響;以Design Expert軟體預測水解反應最適條件為35.3°C、pH 5.5、攪拌速率222 rpm、異辛烷/廢食用油體積比為0.34,預測、實際水解率分別為100%、99.7%。固定相脂解酶重複水解廢食用油10次後活性仍維持不變。而水解反應亦應用於回流式填充床反應器中,反應2小時後可得到最高水解率90.5%。將脂肪酸分離後利用Amberlyst 15進行酯化反應轉化為生質柴油,反應兩小時後酯化率可達99.9%。
Lipase from Candida rugosa was immobilized onto polystyrene-divinylbenzene support for converting waste cooking oil to biodiesel using a two-step process. The immobilization improved the thermal stability and stability at acidic pH of the enzyme. The adsorbed lipase was applied to the hydrolysis of waste cooking oil to fatty acids, and the effects of temperature, pH, shaking speed, and isooctane/waste cooking oil ratio were evaluated using response surface methodology combined with central composite design. The optimal conditions for the lipase-catalyzed hydrolysis were 35.3°C, pH 5.5, shaking speed of 222 rpm, and isooctane/ waste cooking oil ratio of 0.34; the predicted and experimental conversions were 100 and 99.7%, respectively. The conversion of waste cooking oil to fatty acids remained the same when adsorbed lipase was reused for ten reaction cycles. The hydrolysis of waste cooking oil was also performed in recycled-batch mode with a packed-bed reactor; highest conversion of 90.5% was observed at 2 h. The fatty acids were separated and further converted to biodiesel via Amberlyst 15-catalyzed esterification; the conversion of waste cooking oil to biodiesel reached 99.9% after a 2-h incubation.
ACKNOWLEDGEMENT I
CHINESE ABSTRACT II
ABSTRACT III
LIST OF FIGURES VII
LIST OF TABLES IX
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 Biodiesel 3
2.1.1 Introduction to biodiesel 3
2.1.2 Biodiesel production by transesterification 6
2.1.3 Various feedstock for biodiesel production 14
2.2 Lipase 16
2.2.1 Introduction to lipase 16
2.2.2 Candida rugosa lipase 19
2.2.3 Immobilization of lipase by adsorption 24
2.2.4 The synthesis of biodiesel using lipase 28
2.3 Response surface methodology 30
2.4 Application of packed-bed reactor to produce biodiesel by enzymatic process 32
CHAPTER 3 MATERIALS AND METHODS 36
3.1 Experimental design 36
3.2 Reagent list and experimental equipment 37
3.2.1 Reagent list 37
3.2.2 Experimental equipment 38
3.3 Experimental methods 39
3.3.1 Assay for lipase activity 39
3.3.2 Adsorption of lipase on Diaion HP-20 39
3.3.3 Immobilization of lipase by cross-linking 40
3.3.4 Protein determination 41
3.3.5 Hydrolysis of waste cooking oil in a batch reactor 41
3.3.6 2k factorial design and method of steepest ascent 42
3.3.7 Response surface methodology 42
3.3.8 Hydrolysis of waste cooking oil using a packed-bed reactor 43
3.3.9 Determination of acid value 44
3.3.10 Esterification of fatty acids 45
3.3.11 Analysis of fatty acid methyl esters 45
CHAPTER 4 CHARACTERIZATION OF IMMOBILIZED Candida rugosa LIPASE 47
4.1 Introduction 47
4.2 Activity and immobilization efficiency 47
4.3 Effect of pH on activity and stability 49
4.4 Effect of temperature on activity and stability 52
4.5 Storage stability 55
4.6 Reusability 57
4.7 Kinetic parameters 57
CHAPTER 5 OPTIMIZING THE HYDROLYSIS PROCESS AND SYNTHESIS OF BIODIESEL FROM FATTY ACIDS 61
5.1 Introduction 61
5.2 Screening of significant factors affecting hydrolysis of waste cooking oil 61
5.3 Method of steepest ascent 62
5.4 Effects of variables on hydrolysis and their optimization 66
CHAPTER 6 HYDROLYSIS PROCESS IN A RECYCLE-BATCH SYSTEM 72
6.1 Introduction 72
6.2 Effect of reaction time on the conversion of waste cooking oil. 72
6.3 Effect of enzyme loading on the conversion of waste cooking oil. 72
6.4 Operational stability of adsorbed Candida rugosa lipase 76
CHAPTER 7 CONCLUSIONS 78
REFERENCES 80
APPENDIX 96
1.Talukder MMR, Wu JC, Chua LPL. Conversion of Waste Cooking Oil to Biodiesel via Enzymatic Hydrolysis Followed by Chemical Esterification. Energy & Fuels. 2010; 24: 2016-9.
2.Goldemberg J, Johansson TB, Reddy AK, Williams RH. Energy for the New Millennium. Ambio. 2001; 30: 330-7.
3.Demirbas A. Progress and Recent Trends in Biodiesel Fuels. Energy Conversion and Management. 2009; 50: 14-34.
4.Canakci M, Sanli H. Biodiesel Production from Various Feedstocks and Their Effects on the Fuel Properties. Journal of Industrial Microbiology and Biotechnology. 2008; 35: 431-41.
5.Ma F, Hanna MA. Biodiesel Production: A Review. Bioresource Technology. 1999; 70: 1-15.
6.Goering CE, Daugherty MJ, Heakin AJ, Pryde EH, Schwab AW. Fuel Properties of Eleven Vegetable Oils. Transactions of the ASAE. 1982; 25: 1472-7.
7.Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research. 2005; 44: 5353-63.
8.Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K. Overview of the Production of Biodiesel from Waste Cooking Oil. Renewable and Sustainable Energy Reviews. 2013; 18: 184-93.
9.Sharma YC, Singh B. Development of Biodiesel from Karanja, a Tree Found in Rural India. Fuel. 2008; 87: 1740-2.
10.Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinler B. Biodiesel Production from Sunflower, Soybean, and Waste Cooking Oils by Transesterification Using Lipase Immobilized onto a Novel Microporous Polymer. Bioresource Technology. 2009; 100: 1983-91.
11.Tomasevic AV, Siler-Marinkovic SS. Methanolysis of Used Frying Oil. Fuel Processing Technology. 2003; 81: 1-6.
12.Rashid U, Anwar F, Moser BR, Ashraf S. Production of Sunflower Oil Methyl Esters by Optimized Alkali-Catalyzed Methanolysis. Biomass and Bioenergy. 2008; 32: 1202-5.
13.Encinar JM, González JF, Martínez G, Sánchez N, Pardal A. Soybean Oil Transesterification by the Use of a Microwave Flow System. Fuel. 2012; 95: 386-93.
14.Fukuda H, Kondo A, Noda H. Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering. 2001; 92: 405-16.
15.Canakci M. The Potential of Restaurant Waste Lipids as Biodiesel Feedstocks. Bioresource Technology. 2007; 98: 183-90.
16.Garpen J, Canakei M. Biodiesel Production from Oils and Fats with High Free Fatty Acids. Transactions of the ASAE. 2001; 44: 1429-36.
17.Zheng S, Kates M, Dubé MA, McLean DD. Acid-Catalyzed Production of Biodiesel from Waste Frying Oil. Biomass and Bioenergy. 2006; 30: 267-72.
18.Wang Y, Ou S, Liu P, Xue F, Tang S. Comparison of Two Different Processes to Synthesize Biodiesel by Waste Cooking Oil. Journal of Molecular Catalysis A: Chemical. 2006; 252: 107-12.
19.Formo M. Ester Reactions of Fatty Materials. Journal of the American Oil Chemists Society. 1954; 31: 548-59.
20.Ribeiro BD, Castro AMd, Coelho MAZ, Freire DMG. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzyme Research. 2011; 2011: 16.
21.Bisen PS, Sanodiya BS, Thakur GS, Baghel RK, Prasad GB. Biodiesel Production with Special Emphasis on Lipase-Catalyzed Transesterification. Biotechnology Letters. 2010; 32: 1019-30.
22.Akoh CC, Chang SW, Lee GC, Shaw JF. Enzymatic Approach to Biodiesel Production. Journal of Agricultural and Food Chemistry. 2007; 55: 8995-9005.
23.Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y. Conversion of Vegetable Oil to Biodiesel Using Immobilized Candida antarctica Lipase. Journal of the American Oil Chemists' Society. 1999; 76: 789-93.
24.Demirbas A. Political, Economic and Environmental Impacts of Biofuels: A Review. Applied Energy. 2009; 86: 108-17.
25.Aarthy M, Saravanan P, Gowthaman MK, Rose C, Kamini NR. Enzymatic Transesterification for Production of Biodiesel Using Yeast Lipases: An Overview. Chemical Engineering Research and Design. 2014; 92: 1591-601.
26.Gui MM, Lee KT, Bhatia S. Feasibility of Edible Oil Vs. Non-Edible Oil Vs. Waste Edible Oil as Biodiesel Feedstock. Energy. 2008; 33: 1646-53.
27.Lam MK, Lee KT, Mohamed AR. Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (Waste Cooking Oil) to Biodiesel: A Review. Biotechnology Advances. 2010; 28: 500-18.
28.Huang YH, Wu JH. Analysis of Biodiesel Promotion in Taiwan. Renewable and Sustainable Energy Reviews. 2008; 12: 1176-86.
29.Leung DYC, Guo Y. Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production. Fuel Processing Technology. 2006; 87: 883-90.
30.Li Q, Du W, Liu D. Perspectives of Microbial Oils for Biodiesel Production. Applied Microbiology and Biotechnology. 2008; 80: 749-56.
31.Mercer P, Armenta RE. Developments in Oil Extraction from Microalgae. European Journal of Lipid Science and Technology. 2011; 113: 539-47.
32.Huang C, Chen XF, Xiong L, Chen XD, Ma LL, Chen Y. Single Cell Oil Production from Low-Cost Substrates: The Possibility and Potential of Its Industrialization. Biotechnology Advances. 2013; 31: 129-39.
33.Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. Oleaginous Yeasts for Biodiesel: Current and Future Trends in Biology and Production. Biotechnology Advances. 2014; 32: 1336-60.
34.Saxena RK, Sheoran A, Giri B, Davidson WS. Purification Strategies for Microbial Lipases. Journal of Microbiological Methods. 2003; 52: 1-18.
35.Sharma R, Chisti Y, Banerjee UC. Production, Purification, Characterization, and Applications of Lipases. Biotechnology Advances. 2001; 19: 627-62.
36.Macrae AR. Lipase-Catalyzed Interesterification of Oils and Fats. Journal of the American Oil Chemists’ Society. 1983; 60: 291-4.
37.Jaeger KE, Reetz MT. Microbial Lipases Form Versatile Tools for Biotechnology. Trends in Biotechnology. 1998; 16: 396-403.
38.Van-Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C. Interfacial Activation of the Lipase-Procolipase Complex by Mixed Micelles Revealed by X-Ray Crystallography. Nature. 1993; 362: 814-20.
39.Schmid RD, Verger R. Lipases: Interfacial Enzymes with Attractive Applications. Angewandte Chemie International Edition. 1998; 37: 1608-33.
40.Carvalho PdO, Contesini FJ, Ikegaki M. Enzymatic Resolution of (R, S)-Ibuprofen and (R, S)-Ketoprofen by Microbial Lipases from Native and Commercial Sources. Brazilian Journal of Microbiology. 2006; 37: 329-37.
41.Lotti M, Grandori R, Fusetti F, Longhi S, Brocca S, Tramontane A, Alberghina L. Cloning and Analysis of Candida cylindracea Lipase Sequences. Gene. 1993; 124: 45-55.
42.Benjamin S, Pandey A. Candida rugosa Lipases: Molecular Biology and Versatility in Biotechnology. Yeast. 1998; 14: 1069-87.
43.Lee GC, Tang SJ, Sun KH, Shaw JF. Analysis of the Gene Family Encoding Lipases in Candida rugosa by Competitive Reverse Transcription-PCR. Applied and Environmental Microbiology. 1999; 65: 3888-95.
44.Öztürk B. Immobilization of Lipase from Candida rugosa on Hydrophobic and Hydrophilic Supports: İzmir Institute of Technology; 2001.
45.Cygler M, Schrag JD. Structure and Conformational Flexibility of Candida rugosa Lipase. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1999; 1441: 205-14.
46.Domínguez de María P, Sánchez-Montero JM, Sinisterra JV, Alcántara AR. Understanding Candida rugosa Lipases: An Overview. Biotechnology Advances. 2006; 24: 180-96.
47.Zhao X, Qi F, Yuan C, Du W, Liu D. Lipase-Catalyzed Process for Biodiesel Production: Enzyme Immobilization, Process Simulation and Optimization. Renewable and Sustainable Energy Reviews. 2015; 44: 182-97.
48.Cao L. Carrier-Bound Immobilized Enzymes: Principles, Application and Design: John Wiley & Sons, Inc.; 2006.
49.Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme and Microbial Technology. 2007; 40: 1451-63.
50.Huang FC, Ke CH, Kao CY, Lee WC. Preparation and Application of Partially Porous Poly(Styrene-Divinylbenzene) Particles for Lipase Immobilization. Journal of Applied Polymer Science. 2001; 80: 39-46.
51.Nawani N, Singh R, Kaur J. Immobilization and Stability Studies of a Lipase from Thermophilic Bacillus sp.: The Effect of Process Parameters on Immobilization of Enzyme. Electronic Journal of Biotechnology. 2006; 9: 559-65.
52.Bayramoglu G, Karagoz B, Altintas B, Arica MY, Bicak N. Poly(Styrene-Divinylbenzene) Beads Surface Functionalized with Di-Block Polymer Grafting and Multi-Modal Ligand Attachment: Performance of Reversibly Immobilized Lipase in Ester Synthesis. Bioprocess and Biosystems Engineering. 2011; 34: 735-46.
53.Hernandez K, Garcia-Galan C, Fernandez-Lafuente R. Simple and Efficient Immobilization of Lipase B from Candida antarctica on Porous Styrene-Divinylbenzene Beads. Enzyme and Microbial Technology. 2011; 49: 72-8.
54.Bussamara R, Dall'agnol L, Schrank A, Fernandes KF, Vainstein MH. Optimal Conditions for Continuous Immobilization of Pseudozyma hubeiensis (Strain HB85A) Lipase by Adsorption in a Packed-Bed Reactor by Response Surface Methodology. Enzyme Research. 2012; 329178: 1-12.
55.Rodrigues RC, Pessela BCC, Volpato G, Fernandez-Lafuente R, Guisan JM, Ayub MAZ. Two Step Ethanolysis: A Simple and Efficient Way to Improve the Enzymatic Biodiesel Synthesis Catalyzed by an Immobilized-Stabilized Lipase from Thermomyces lanuginosus. Process Biochemistry. 2010; 45: 1268-73.
56.Ognjanović ND, Šaponjić SV, Bezbradica DI, Knežević ZD. Lipase-Catalyzed Biodiesel Synthesis with Different Acyl Acceptors. Acta Periodica Technologica. 2008: 161-9.
57.Talukder MMR, Das P, Fang TS, Wu JC. Enhanced Enzymatic Transesterification of Palm Oil to Biodiesel. Biochemical Engineering Journal. 2011; 55: 119-22.
58.Ying M, Chen G. Study on the Production of Biodiesel by Magnetic Cell Biocatalyst Based on Lipase-Producing Bacillus subtilis. Applied Biochemistry and Biotechnology. 2007; 137-140: 793-803.
59.Kumari V, Shah S, Gupta MN. Preparation of Biodiesel by Lipase-Catalyzed Transesterification of High Free Fatty Acid Containing Oil from Madhuca indica. Energy & Fuels. 2007; 21: 368-72.
60.Chen Y, Xiao B, Chang J, Fu Y, Lv P, Wang X. Synthesis of Biodiesel from Waste Cooking Oil Using Immobilized Lipase in Fixed Bed Reactor. Energy Conversion and Management. 2009; 50: 668-73.
61.Pal R, Sarkar T, Khasnobis S. Amberlyst-15 in Organic Synthesis. Arkivoc. 2012; 1: 570-609.
62.Talukder MMR, Wu JC, Fen NM, Melissa YLS. Two-Step Lipase Catalysis for Production of Biodiesel. Biochemical Engineering Journal. 2010; 49: 207-12.
63.Myers RH, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments: John Wiley & Sons, Inc.; 2009.
64.Box GEP, Wilson KB. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society Series B (Methodological). 1951; 13: 1-45.
65.Montgomery DC. Design and Analysis of Experiments: John Wiley & Sons, Inc.; 1984.
66.Shao P, Meng X, He J, Sun P. Analysis of Immobilized Candida rugosa Lipase Catalyzed Preparation of Biodiesel from Rapeseed Soapstock. Food and Bioproducts Processing. 2008; 86: 283-9.
67.Kuo CH, Peng LT, Kan SC, Liu YC, Shieh CJ. Lipase-Immobilized Biocatalytic Membranes for Biodiesel Production. Bioresource Technology. 2013; 145: 229-32.
68.Liu CH, Huang CC, Wang YW, Lee DJ, Chang JS. Biodiesel Production by Enzymatic Transesterification Catalyzed by Burkholderia Lipase Immobilized on Hydrophobic Magnetic Particles. Applied Energy. 2012; 100: 41-6.
69.Raita M, Arnthong J, Champreda V, Laosiripojana N. Modification of Magnetic Nanoparticle Lipase Designs for Biodiesel Production from Palm Oil. Fuel Processing Technology. 2015; 134: 189-97.
70.Hama S, Tamalampudi S, Yoshida A, Tamadani N, Kuratani N, Noda H, Fukuda H, Kondo A. Enzymatic Packed-Bed Reactor Integrated with Glycerol-Separating System for Solvent-Free Production of Biodiesel Fuel. Biochemical Engineering Journal. 2011; 55: 66-71.
71.Nielsen NS, Yang T, Xu X, Jacobsen C. Production and Oxidative Stability of a Human Milk Fat Substitute Produced from Lard by Enzyme Technology in a Pilot Packed-Bed Reactor. Food Chemistry. 2006; 94: 53-60.
72.Messing R. Immobilized Enzymes for Industrial Reactors: Elsevier; 1975.
73.Hama S, Tamalampudi S, Yoshida A, Tamadani N, Kuratani N, Noda H, Fukuda H, Kondo A. Process Engineering and Optimization of Glycerol Separation in a Packed-Bed Reactor for Enzymatic Biodiesel Production. Bioresource Technology. 2011; 102: 10419-24.
74.Hama S, Yoshida A, Tamadani N, Noda H, Kondo A. Enzymatic Production of Biodiesel from Waste Cooking Oil in a Packed-Bed Reactor: An Engineering Approach to Separation of Hydrophilic Impurities. Bioresource Technology. 2013; 135: 417-21.
75.Chang C, Chen JH, Chang CmJ, Wu TT, Shieh CJ. Optimization of Lipase-Catalyzed Biodiesel by Isopropanolysis in a Continuous Packed-Bed Reactor Using Response Surface Methodology. New Biotechnology. 2009; 26: 187-92.
76.Shaw JF, Chang SW, Lin SC, Wu TT, Ju HY, Akoh C, Chang RH, Shieh CJ. Continuous Enzymatic Synthesis of Biodiesel with Novozym 435. Energy & Fuels. 2008; 22: 840-4.
77.Chen HC, Ju HY, Wu TT, Liu YC, Lee CC, Chang C, Chung YL, Shieh CJ. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study. BioMed Research International. 2010; 2011.
78.Nie K, Xie F, Wang F, Tan T. Lipase Catalyzed Methanolysis to Produce Biodiesel: Optimization of the Biodiesel Production. Journal of Molecular Catalysis B: Enzymatic. 2006; 43: 142-7.
79.Lee J, Kim S, Park C, Tae B, Han S, Kim S. Development of Batch and Continuous Processes on Biodiesel Production in a Packed-Bed Reactor by a Mixture of Immobilized Candida rugosa and Rhizopus oryzae Lipases. Applied Biochemistry and Biotechnology. 2010; 161: 365-71.
80.Pencreac'h G, Leullier M, Baratti JC. Properties of Free and Immobilized Lipase from Pseudomonas cepacia. Biotechnology and Bioengineering. 1997; 56: 181-9.
81.Deng FY. Enzymatic Hydrolysis and Chemical Esterification Production of Biodiesel from Waste Cooking Oil: Tatung University; 2013.
82.Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of Protein Using Bicinchoninic Acid. Analytical Biochemistry. 1985; 150: 76-85.
83.Chesterfield DM, Rogers PL, Al-Zaini EO, Adesina AA. Production of Biodiesel via Ethanolysis of Waste Cooking Oil Using Immobilised Lipase. Chemical Engineering Journal. 2012; 207–208: 701-10.
84.Li SC. Immobilization of Pseudomonas cepacia Lipase onto Diaion HP-20 and Its Application for the Production of Biodiesel: Tatung University; 2014.
85.劉英俊. 酵素工程: 中央圖書出版社; 2002.
86.Tutar H, Yilmaz E, Pehlivan E, Yilmaz M. Immobilization of Candida rugosa Lipase on Sporopollenin from Lycopodium clavatum. International Journal of Biological Macromolecules. 2009; 45: 315-20.
87.Queiroz JA, Tomaz CT, Cabral JMS. Hydrophobic Interaction Chromatography of Proteins. Journal of Biotechnology. 2001; 87: 143-59.
88.Balcão VM, Paiva AL, Xavier Malcata F. Bioreactors with Immobilized Lipases: State of the Art. Enzyme and Microbial Technology. 1996; 18: 392-416.
89.Mak KH. Immobilization of Lipase from Pseudomonas cepacia onto Magnetic Nanoparticles: Tatung University; 2008.
90.Poppe JK, Garcia-Galan C, Matte CR, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ. Optimization of Synthesis of Fatty Acid Methyl Esters Catalyzed by Lipase B from Candida antarctica Immobilized on Hydrophobic Supports. Journal of Molecular Catalysis B: Enzymatic. 2013; 94: 51-6.
91.Chiou SH, Wu WT. Immobilization of Candida rugosa Lipase on Chitosan with Activation of the Hydroxyl Groups. Biomaterials. 2004; 25: 197-204.
92.Nielsen PM, Brask J, Fjerbaek L. Enzymatic Biodiesel Production: Technical and Economical Considerations. European Journal of Lipid Science and Technology. 2008; 110: 692-700.
93.Shu C, Cai J, Huang L, Zhu X, Xu Z. Biocatalytic Production of Ethyl Butyrate from Butyric Acid with Immobilized Candida rugosa Lipase on Cotton Cloth. Journal of Molecular Catalysis B: Enzymatic. 2011; 72: 139-44.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳慧君,〈張秀亞和她的散文世界〉,《幼獅文藝》,第四八卷第三期,一九七八年九月。
2. 王堯,〈「美文」的「閑話」與「獨語」││關於現代散文話語的一種研究〉《中國現代文學理論季刊》第一一期,一九九八年九月。
3. 余崇生,〈從鄉愁到現實││略論台灣現代散文風格的變遷〉《中國現代文學理論季刊》,第七期。
4. 林燿德,〈傳統之軸與前衛之輪││半世紀的台灣散文面目〉《聯合文學》第一三二期,一九九五年一○月。
5. 林央敏,〈散文出位〉《文訊雜誌》第一四期,一九八四年一二月。
6. 尚德敏,〈迎向藍天與陽光的苦奈樹││訪張秀亞女士〉,《中華文藝》一九八一年十月。
7. 封德屏,〈以文字作水墨畫的藝術家―訪作家張秀亞〉《幼獅文藝》第四八卷第三期,一九七八年九月。
8. 陳芳明,〈台灣新文學史第十一章││反共文學形成及其發展〉,《聯合文學》第一九九期,二○○一年五月。
9. 陳芳明,〈台灣新文學史第十二章││五○年代的文學侷限與突破〉,《聯合文學》第二○○期,二○○一年六月。
10. 陳芳明,〈台灣新文學史第十七章││女性詩人與散文家的現代轉折〉,《聯合文學》第二二○期,二○○三年二月。
11. 張瑞芬,〈鞦韆外的天空││學院閨秀散文特質與演變〉,《逢甲人文社會學報》第二期,二○○一年五月。
12. 張瑞芬,〈被邊緣化的台灣當代女性散文研究〉,《文訊雜誌》第二○五期,二○○二年一一月。
13. 張堂錡,〈跨越邊界―現代散文的裂變與演化〉《文訊雜誌》第一六六期,一九九九年九月。
14. 黃秋芳,〈激流與風暴交奏出來的合唱―張秀亞女士心性中的柔與韌〉,《文訊雜誌》第三八期,一九八八年一○月。
15. 樸月,〈此情已自成追憶││悼念張秀亞阿姨〉,《文訊雜誌》第一九○期,二○○一年八月。
 
無相關點閱論文