跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹育嘉
研究生(外文):Yu-Chia Tsao
論文名稱:側磨結構式光纖的表面電漿共振感測技術之研究與應用
論文名稱(外文):Study of optical fiber sensors based on surface plasmon resonance with side-polished structures and their applications
指導教授:吳慕鄉
指導教授(外文):Mu-Shiang Wu
口試委員:吳慕鄉
口試委員(外文):Mu-Shiang Wu
口試日期:2015-06-11
學位類別:博士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:153
中文關鍵詞:退伍軍人菌生物感測串級式表面電漿共振側邊研磨光纖感測器親水性即時監控
外文關鍵詞:CascadeSurface Plasmon Resonance (SPR)Side-polishedOptical fiber sensorIn-situ real-time monitorHydrophilicBiosensingLegionella pneumophila
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出側邊研磨式表面電漿共振(SPR)光纖感測技術與其多項應用。本研究中使用通訊系統的多模光纖(62.5 μm /125 μm),鍍上金膜作為表面電漿共振式光纖感測器的特性研究、以及其應用研究。本論文整合側邊研磨式光纖感測技術與表面電漿共振技術,側邊研磨製程採用三種研磨粒徑大小不同的鑽石研磨紙(6 μm, 1 μm,和0.1 μm),為了增加表面電漿共振的檢測靈敏度,光纖研磨標準被設定在長度5 mm與深度62.5 μm的位置,並使用直流濺鍍系統在光纖的側邊研磨面,鍍上40 nm的金薄膜,以此金薄膜作為表面電漿子激發層。在結構設計上,提出串級式結構與多階式結構,以折射率差異微小的兩種液體(去離子水與緩衝溶液)作為驗證樣品,當入射光的TM模態在第一個檢測區被吸收完時,在經過非檢測區域時TE模態可以重新耦合提供TM模態並提供第二的檢測區域使用,此方式被證明可提升光纖感測元件的靈敏度。本研究同時提出使用鹵素燈作為光源,透過一次性掃描得到完整的表面電漿共振光纖感測器之特性,以一系列的折射率液體(1.34~1.44)定義出此感測元件之靈敏度可達到 3.64 x 10^-6 RIUs,並以光纖的光譜特性結果為基礎,本論文同時提出交叉點(Cross-point)、多層膜結構與冷電漿處理方式,證實可以進一步提升靈敏度,並利用光纖感測元件的優異特性應用在生物檢測(DNA檢測、退伍軍人菌檢測)、表面親水性官能基檢測、以及開發一個新的線上即時鍍膜檢測技術(驗證在二氧化鈦的無機材料鍍膜、與異丙醇的有機材料鍍膜)。
The optical fiber sensors based on surface plasmon resonance with side-polished structures and their applications are proposed. The specification of SPR optical fiber sensor in this study is with the graded-index multi-mode optical fiber with 62.5 μm core diameter and 62.5 μm cladding. To increase the sensitivity of the SPR measurements, the length of the polished surface is set to 5 mm and the depth to 62.5 μm for the fundamental mode region. The gold thin film deposited on the polished surface by a DC sputtering system is approximately 40 nm thick to excite the surface plasmon. In the structure issue, the cascaded structure and multi-step structure are expected to enhance SPR effect with the small difference variation of the refractive index between the two solutions - deionized (DI) water and phosphate buffered saline (PBS). While the incident TM mode is mostly absorbed in the first sensing region, the TE mode is coupled to the TM mode in the coupling region, which is subsequently used for detection in the second region. We accomplish the one step scan to realize the characteristic of SPR spectra response with halogens light. With a series of the refractive indices (RI) from 1.34 to 1.44, the sensitivity of the optical fiber sensor is demonstrated to be able to achieve 3.64 x 10^-6 RIUs. Based on it, we also propose the enhancement method for SPR sensitivity, such as Cross-point method, multilayer, and cold plasma treatment. The high performance of SPR optical fiber sensor is applied in biosensing (DNA, Legionella pneumophila), the investigation of hydrophilic functional groups, and developing a new in-situ real-time thin film monitoring technology.
ACKNOWLEDGEMENT i
CHINESE ABSTRACT ii
ENGLISH ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURESvii
CHAPTER
I. INTRODUCTION 1
1.1 Overview 1
1.2 Motivation 5
II. PEPER REVIEW 6
2.1 Similar Works on Surface Plasmon Resonance Technique 6
2.2 Similar Works on SPR Optical Fiber Sensor 7
III. FABRICATION AND EXPERIMENTS 9
3.1 Fabricating a Side-polished Holder 11
3.1.1 The Point Contact Holder 11
3.1.2 The V-Groove Holder 12
3.1.3 The Parallel Array Holder 19
3.2 The process of Side-polished Techniques 23
3.2.1 The Side-polished Process and Evaluation 24
3.2.2 The Real-time Monitor with Height Gage 28
3.3 The Design of Optical Fiber Sensor with Side-polished Structure 31
3.3.1 The Design of Optical Fiber Sensor 31
3.3.2 Sputtering Deposition of Au Thin Film for the SPR Sensors 34
3.4 Experimental Setup 39
3.4.1 The Light Source Sensing System in Real-time 39
3.4.2 The Halogens Light Sensing System for Spectral Responses 43
3.4.3 Applications in the Biosensing System 45
3.4.4 The In-situ Real-time Monitoring System 48
3.5 Summary 53
IV. RESULTS AND DISCUSSIONS 54
4.1 The Characteristics of Optical Fiber Sensors with Side-polished Structure
based on Surface Plasmon Resonance 54
4.1.1 The Single-mode SPR Optical Fiber Sensor 54
4.1.2 Multi-mode SPR Optical Fiber Sensors 58
4.2 SPR Optical Fiber Sensors with Various Structures 62
4.2.1 The SPR Optical Fiber Sensor with a Special Angle Structure 62
4.2.2 SPR Optical Fiber Sensors with a Cascaded Structure 67
4.2.3 SPR Optical Fiber Sensors with a Multi-step Structure 72
4.3 Spectral Responses of the SPR Optical Fiber Sensors 78
4.3.1 The Spectral Characteristics of SPR Optical Fiber Sensors 78
4.3.2 The Cross-point Method to Increase the SPR Responses 83
4.3.3 The Multilayer Structure to Increase the SPR Sensitivity 89
4.4 Surface Modification for the SPR Optical Fiber Sensor 94
4.4.1 Surface Acid Treatment to Improve the Hydrophilic Surface 94
4.4.2 Cold Plasma Modification to Enhance the SPR Effect for the
Biosensing 97
4.4.3 Investigation of Cold Plasma Deposited Hydrophilic Functional
Groups onto Material Surfaces 100
4.5 Applications of the SPR Optical Fiber Sensor to Biosensing 106
4.5.1 For the DNA Testing 106
4.5.2 Development of the SPR Optical Fiber Sensor for the Detection
of Legionella pneumophila using a Halogens Light and a 850nm
LED 108
4.6 The In-situ Real-Time Monitoring of SPR Optical Fiber Sensor 118
4.6.1 The Real-time Monitoring for Growth of the Thin Film on
TiO2 118
4.6.2 The Real-time Monitoring of the Cold Plasma Deposition with
the IPA Functional Groups 124
V. CONCLUSIONS AND FUTURE WORK 126
5.1 Conclusions 126
5.2 Future Work 127
REFERENCES 128
APPENDIX 133
1.R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 4 (1902) p.396-402.
2.R.W. Wood, Diffraction gratings with controlled groove form and abnormal distribution of intensity. Philosophical Magazine Series 6, 23 (1912) p.310-317.
3.L. Rayleigh, Dynamical theory of the grating. Proc.Roy.Soc.(London), A79 (1907) p.399.
4.R.H. Ritchie, Plasma Losses by Fast Electrons in Thin Films. Physical Review 106 (1957) p.874–881.
5.C.J. Powell, and J.B. Swan, Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium. Physical Review 18: (1960).
6.D. Bohm, and David Pines, A Collective Description of Electron Interactions. I. Magnetic Interactions. Physical Review 82 (1951) p.625-634.
7.D. Bohm, and David Pines, A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions. Physical Review 85 (1952) p.338-353.
8.D. Bohm, and D. Pines, A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas. Physical Review 92 (1953) p.609-626.
9.E. Burstein, W.P. Chen, Y.J. Chen, and A. Hartstein. Surface polaritons - propagating electromagnetic modes at interfaces. J. Vac. Sci. Technol. 11 (1974) p.1004-1019.
10.SPR Pages (http://www.sprpages.nl/spr-overview/spr-history.html#ref13)
11.Wikipedia:Surface Plasmon (http://en.wikipedia.org/wiki/Surface_plasmon)
12.P. Albert, and H.A. Atwater, Plasmonics: optics at the nanoscale, Materials Today. 8 (2005) p.56.
13.S. Zeng, X. Yu, W.C. Law, Y. Zhang, Rui Hua, Xuan-Quyen Dinh, Ho-Pui Ho, and K.T. Yong, Corresponding author contact information, Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B 176 (2013) p.1128-1133.
14.E. Kretschmann, and H. Räther, Radiative decay of nonradiative surface plasmon excited by light. Z. Naturf. 23A (1968) p.2135-2136.
15.E. Kretschmann, Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen. Z. Phys., 241 (1971) p.313-324.
16.A.Otto, Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik 216 (1968) p.398-410.
17.A.J. Tudos, and R.B.M. Schasfoort, Introduction to surface plasmon resonance, Royal Society of Chemistry, Handbook of Surface Plasmon Resonance (Eds.) 2008.
18.S.Löfås, Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure Appl. Chem. 67 (1995) p.829-834.
19.S. Sjolander, and C.urbaniczky, Integrated fluid handling system for biomolecular interaction analysis. Analytical Chemistry 63 (1991) p.2338-2345.
20.P.Säfsten and, S.L. Klakamp, Andrew W. Drake, Robert Karlsson, David G. Myszka, Screening antibody-antigen interactions in parallel using Biacore A100. Analytical Biochemistry 2 (2006) p.181-190.
21.W.H. Tsai, Y.C. Tsao, H.Y. Lin, and B.C.Sheu, Cross-point analysis for multimode fiber sensor based on surface plasmon resonance. Opt. Lett. 30 (2005) p.2209-2211.
22.H.Y. Lin, W.H. Tsai, Y.C. Tsao, and B.C.Sheu, Side-polished multimode fiber sensor based on surface plasmon resonance with halogen light. Appl. Opt. 46 (2007) p.800-806.
23.Y.C. Lin, W.H. Tsai, Y.C. Tsao, and J.K. Tai, An enhance optical multimode fiber sensor based on surface plasmon resonance with cascaded structure. IEEE Photo. Tech. Lett. 20 (2008) p.1287-1289.
24.W.H. Tsai, Y.C. Lin, J.K. Tai, and Y.C. Tsao, Multi-step structure of side-polished fiber sensor to enhance SPR effect. Optics & Laser Technology 42 (2010) p.453-456.
25.Y.C. Lin, Y.C. Tsao, W.H. Tsai, T.S. Hung, K.S. Chen, and S.C. Liao, The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification. Sensors and Actuators B 133 (2008) p.370-373.
26.H.Y. Lin, Y.C. Tsao, W.H. Tsai, Y.W. Yang, T.R. Yan, B.C. Sheu, Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED, Sensors and Actuators A 138 (2007) p.299-305.
27.Y.C. Tsao, Y.W. Yang, W.H. Tsai, T.R. Yan, Side-Polished Fiber Immunosensor Based on Surface Plasmon Resonance for Detection of Legionella pneumophila. Biomedical Optics 2008, SPIE, 6852-5, 19 Jan. 2008.
28.L.Y. Chen, Y.C. Tsao, and Y.C. Lin, Protein immobilization onto IPA interface with optical fiber sensor based on surface plasmon resonance. Microwave and Optical Technology Letters V56, 12, (2014) p.2826–2828.
29.Y.C. Tsao, Y.C. Lin, W.H. Tsai, and M.S. Wu, “Investigation of optic fiber sensor based on surface plasmon resonance for monitoring the concentration of plasma deposited hydrophilic functional groups on material surfaces. Sensors and Actuators A 166 (2011) p.9-13.
30.Y.C. Tsao, W.H. Tsai, W.C. Shih, and M.S. Wu, An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films. Sensors 2013 (13) p.9513-9521.
31.H. Raether, Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag. 11 (1988) p.10-13.
32.S. Shen, T. Lin, and J. Guo, Optical phase-shift detection of surface plasmon resonance. Appl. Opt. 37 (1998) p.1747-1751.
33.K. Matsubara, S. Kawata, and S. Minami, Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27 (1988) p.1160-1163.
34.L.M. Zhang, and D. Uttamchandani, Optical chemical sensing employing surface plasmon resonance. Electron. Lett. 23 (1988) p.1469-1470.
35.M.B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces, and J. Mateo, Determination of probable alcohol yield in musts by means of an SPR optical sensor. Sensors and Actuators B 11 (1993) p.455-459.
36.B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, Vol. 4 (1983) p.299-304.
37.I. Pockrand, J.D. Swalen, J.G. Gordon II, and M.R. Philpott, Surface plasmon spectroscopy of organic monolayer assemblies. Surface Science. 74 (1978) p.237-244.
38.K.A. Peterlinza,and R. Georgiadis. Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance. Optics Communications 130 (1996) 260-266.
39.B. Liedberg, and I. Lunström, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors and Actuators B 11 (1993) p.63-72.
40.Ch. Striebel, A. Brecht, and G. Gauglitz, Characterization of biomembranes by spectral elipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosensors and Bioelectronics 9 (1994) p.139-146.
41.R.C. Jorgenson, and S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators. B 12 (1993) p.213-220.
42.A. Dı́ez, M.V. Andrés, and J.L. Cruz, In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers. Sensors and Actuators B 73 (2001) p.95-99.
43.M.H. Chin, S.F. Wang, and R.S. Chang, D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Opt. Lett. 30 (2005) p.233-235.
44.W.V. Sorin, and M.H. Yu, Single-mode-fiber ring dye laser. Opt. Lett. 10 (1985) p.550-552.
45.B.K. Oh, Y.K. Kim, W. Lee, Y.M. Bae, W.H. Lee, and J.W. Choi, Immunosensor for detection of Legionella pneumophila using surface plasmon resonance, Biosensors and Bioelectronics 18 (2003) p.605–611.
46.K. Kolari, and A. Hokkanen, Tunable hydrophilicity on a hydrophobic fluorocarbon polymer coating on silicon. J. Vac. Sci. Technol. A 24 (2006) p.1005–1011.
47.M. Shen, J. Xu, X. Dong, L. Li, and X. Guo, Biocompatible polymeric hydrogels with tunable adhesion to both hydrophobic and hydrophilic surfaces. Proceedings of the 3rd International Conference Bioinformatics and Biomedical Engineering 2009 (ICBBE 2009) p.11–13
48.Y. Yang, S. Jayaraman, B. Sperling, D.Y. Kim, G.S. Girolami, and J.R. Abelson, In situ spectroscopic ellipsometry analyses of hafnium diboride thin films deposited by single-source chemical vapor deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 25 (2007) p.200-206.
49.Y. Yamada, S. Bao, K. Tajima, M. Okada, M. Tazawa, A. Roos, and K. Yoshimura, In situ spectroscopic ellipsometry study of the hydrogenation process of switchable mirrors based on magnesium-nickel alloy thin films. Journal of Applied Physics. 107 (2010) p.043517-043525.
50.J. L. Stanford, Determination of Surface-Film Thickness from Shift of Optically Excited Surface Plasma Resonance. J. Opt. Soc. America 60 1(1970) p.49-53.
51.H. Kawashima, and K. Sunaga, A sensor for thin film thickness monitor using torsional quartz crystal resonators of stepped, free-free bar-type. Frequency Control Symposium, Proceedings of the 1998 IEEE International, p.691-694.
52.W. K. Chao, and H. K. Wong, Reusable quartz crystals for thickness monitoring in thin film deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 8 (1990) p.150-151.
53.Y.C. Tsao, The study of high resolution fiber sensor based on surface plasmon resonance, Thesis for Master of Science, Institute of Electro-Optical Engineering, Tatung University, 2005.
54.J.K. Tai, A cascaded form of side-polished SPR fiber used to enhance SPR effect, Thesis for Master of Science, Institute of Electro-Optical Engineering, Tatung University, 2007.
55.H.C. Hsu, The study of SPR fiber sensors based on multi-layer structure, Thesis for Master of Science, Institute of Electro-Optical Engineering, Tatung University, 2009.
56.Y.W. Yang, Application of Side-Polished Fiber Immunosensor Based on Surface Plasmon Resonance for the Detection of LgionellaPeumophila, Thesis for Master of Science, Department of Bioengineering, Tatung University, 2006.
57.C. Pan, Determination of small biomolecule by fiber-optics surface plasma resonance sensor, Thesis for Master of Science, Department of Bioengineering, Tatung University, 2007.
58.M.T. Chao, The enhancement method of SPR fiber biosensor with acid and plasma surface modification, Thesis for Master of Science, Institute of Electro-Optical Engineering, Tatung University, 2008.
59.R.K. Liang, The study of microfluidics with porous semi-permeable membrane structure for optical fiber biosensor based on surface plasmon resonance, Thesis for Master of Science, Institute of Electro-Optical Engineering, Tatung University, 2009.
60.C.W. Hsu, The study of using gold nanoparticles to improve the sensitivity of SPR fiber sensors, Thesis for Master of Science, Institute of Electro-Optical Engineering, Tatung University, 2011.
61.K. Thyagarajan, and A.Ghatak, Fiber Optic Essentials. Wiley-Interscience. p.34.
62.Wikipedia:File Optical fiber types.svg
(http://en.wikipedia.org/wiki/File:Optical_fiber_types.svg)
63.POFC fiber products (http://www.pofc.com/page1.aspx?no=260058)
64.Ribbon Fiber Cables (http://www.timbercon.com/ribbon-fiber-cables/)
65.ULTRAPOL Fiber Lensing Machine
(http://www.ultratecusa.com/ultrapol-fiber-lensing-machine)
66.3M diamond film for optical fiber polished
(http://solutions.3m.com/wps/portal/3M/en_US/Electronics_NA/Electronics/Products/)
67.HEIDENHAIN Height Gage
(http://www.heidenhain.com.ar/es_AR/productos-y-aplicaciones/)
68.H. Suzuki, M. Sugimoto, Y. Matsui, and J.Kondoh, Development of A Dual-Color Optical Fiber SPR Sensor, In proceeding of: Sensors, 2005 IEEE.
69.Wikipedia: Fiber optic coupler(http://en.wikipedia.org/wiki/Fiber_optic_coupler)
70.Princetel: Fiber collimators(http://www.princetel.com/tutorial_collimator.asp)
71.Peristaltic Pumps
(http://www.environmentalpumping.co.uk/html/peristaltic-pumps.htm)
72.IDEX products (http://webstore.idex-hs.com)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文