跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:袁道筌
研究生(外文):Dao-Cyuan Yuan
論文名稱:沉積氧化鎳於奈米碳片/鎳網複合電極及其電化學性質之探討
論文名稱(外文):Electrochemical Behavior of Nickel Oxide Composite Electrodes Deposited on Carbon Nanoflakes/Nickel foam
指導教授:施文欽
指導教授(外文):Wen-Ching Shih
口試委員:施文欽
口試委員(外文):Wen-Ching Shih
口試日期:2015-07-01
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:119
中文關鍵詞:奈米碳片電泳沉積法氫氧化鎳電化學電容器氧化鎳
外文關鍵詞:nickel oxideElectrochemical capacitornickel hydroxideelectrophoretic depositionnano-carbon film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用鎳網為基材,利用射頻磁控濺鍍法與電泳沉積法製作電化學電容器電極。利用碳材料的高比表面積與氧化鎳的偽電容效應來改善超級電容器的電性,希望將兩種電極材料的特性結合,使氧化鎳/奈米
碳片複合材料電極的電容量能有所提升。
首先利用射頻磁控濺鍍法與電泳沉積法製作電化學電容器電極,經X射線繞射分析後,出現氧化鎳特徵,表示成功製備出氧化鎳。而由掃描式電子顯微鏡圖中,可發現在經過表面處理的鎳網基材上沉積氧化鎳時,大多數的氧化鎳呈現奈米顆粒的結構。
經由電化學量測得知電泳法備氧化鎳最大比電容值CV量測出來的比電容值為892 Fg-1 、充放電量出來的比電容值為924Fg-1,濺鍍法備氧化鎳最大比電容值之CV量測出來的比電容值為1100 Fg-1 、充放電量出來的比電容值為1009 Fg-1,濺鍍法的第二種方式濺鍍鎳進入爐管氧化測得之比電容值非常低只有40 Fg-1。
In this research, we use nickel foam as substrate to produce electrochemical capacitor electrode in RF Reactive Magnetron Sputtering and in Electrophoretic Deposition. The high specific surface area and Pseudocapacitive Effect are employed to improve electricity characteristics of super-capacitor and it was hoped to join the characteristics of two electrode materials and improve capacitance of the Nickel Oxide / Nano Carbon Film composite electrode.
In the first, RF Reactive Magnetron Sputtering and Electrophoretic Deposition are used to produce electrochemical capacitor electrode. After X-Ray Diffraction Analysis, the characteristics of Nickel Oxide emerged which indicate the success in preparing nickel oxide. And, from the Scanning Electron Microscope Graph, it is identified that on the surface treated nickel mesh substrate, most of the nickel oxide deposited is presented with nano-particle structure.
Through electrochemical measuring, the maximum specific capacitance as measured in CV method, Nickel Oxide in electrophoretic deposition method is 892 Fg-1 and in charging and discharging is 924Fg-1, and the maximum specific capacitance of Nickel Oxide in sputter method is 1100 Fg-1 as measured in CV method and same is 1009 Fg-1 in charging / discharging method, and the 2nd manner of sputter method, the oxidized sputtered nickel entering oven tube, the specific capacitance measured is very low and is only 40 Fg-1.
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 基礎理論與文獻回顧 3
2.1 電化學電容器 3
2.2 電化學反應系統 5
2.2.1循環伏安法 7
2.3 電化學電容器之儲電原理與機制 9
2.3.1 電雙層電容器 10
2.3.2 偽電容/擬電容電容器12
2.4 電極材料之種類12
2.4.1 碳系材料 13
2.4.2 金屬氧化物 13
2.4.3 導電高分子材料 14
2.5 鎳網(發泡鎳Nickel foam) 16
2.6 奈米碳片 17
2.7 電漿原理 19
2.8 濺鍍原理 20
2.8.1 濺鍍產率 21
2.8.2 射頻磁控濺鍍法 22
2.9 氧化鎳之製備與應用27
2.10 電化學電容器電解液之種類及比較 28
2.11 電泳沉積法30
2.11.1 電泳沉積的發展30
2.11.2 電泳沉積之原理 32
2.11.3 定電壓與定電流之電泳沉積 33
2.11.4 電泳沉積法之優點及應用 36
第三章 實驗製程與量測 37
3.1 實驗基材 38
3.2 奈米碳片之製備 39
3.3 氫氧化鎳電泳懸浮液之製備 41
3.3.1 氫氧化鎳之製備 41
3.3.2 硝酸鎳溶液之調配 42
3.4 電泳沉積製程43
3.5 電泳沉積之儀器裝置 44
3.6 氧化鎳電極片之製備 47
3.6.1射頻磁控濺鍍法濺鍍氧化鎳 47
3.6.2射頻磁控濺鍍法濺鍍鎳後進爐管氧化 48
3.6.3電泳沉積法製備氧化鎳 49
3.6.3.1 氧化鎳電極之熱處理影響 50
3.7 氧化鎳電極之物性分析 52
3.7.1 X–ray 繞射儀( X-ray diffraction, XRD) 52
3.7.2 掃描式電子顯微鏡 54
3.8 電化學特性分析 57
3.8.1 循環伏安測試 57
3.8.2 定電流充放電測試 57
3.9 實驗藥品與儀器 58
3.9.1 實驗藥品 58
3.9.2 實驗儀器 59
3.9.3 其他儀器 59
第四章 結果與討論 60
4.1 電泳法與濺鍍法沉積氧化鎳物理特性分析與探討 60
4.1.1 XRD 之結構分析 60
4.1.2 SEM 之表面型態分析 62
4.1.3元素分析 68
4.2 氧化鎳之電化學特性與探討 72
4.2.1 不同沉積方法對電化學特性之研究 72
4.2.1.1電泳法沉積氧化鎳 72
4.2.1.2濺鍍法沉積氧化鎳 72
4.2.2循環伏安法(CV) 73
4.2.3定電流充放電測試 73
4.3 氧化鎳/奈米碳片複合電極之電化學特性與探討 90
4.3.1 基板溫度對於奈米碳片的成長影響 90
第五章 結論與未來展望 92
5.1 結論 92
5.2 未來展望 93
參考文獻 94
[1]C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, E.Frackowiak, F. Begnin,“Carbon materials for the electrochemicalstorage of energy in capacitors” , Carbon, 39, pp. 937-950, 2001.
[2]R. Kotz, M. Carlen, “Principles and applications of electrochemical capacitors” , Electrochimica Acta, 45, pp. 2483-2498, 2000.
[3]R. Gally, A. Ziitel, “Investigation of electro chemical double-layer capacitors (EDLC) electrodes based on carbon nanotubes and activated carbon materials” , Journal of Power Sources, 124, pp.321-329, 2003.
[4]李弘傑,“氯化釕溶液在鈦基材之陽極氧化與陰極還原反應動力學機制探討與沉積物特性分析與應用”,國立高雄應用科技大學化學工程與材料工程系碩士論文, 2005.
[5]李明家,“應用奈米多孔性薄膜之電滲流幫浦”,逢甲大學機械工程研究所碩士班碩士論文, 2007.
[6]胡啟章,“電化學原理與方法”,五南圖書出版公司, 2011.
[7]A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications” , John Wiley & Sons, Singapore, 1980.
[8]D. Pletcher, “A First Course in Electrode Processes” , The Electrochemical Consultancy, England, 1991.
[9]D.R. Crow, “Principles and Applications of Electrochemistry” , 2nd Ed. Chapman and Hall Ltd, London, 1979.
[10]A. Burke, “Ultracapacitors: why, how, and where is the technology” ,Journal of Power Sources, 91, pp. 37-50, 2000.
[11]鄧梅根,“電化學電容器電極材料研究”, 中國科學技術大學出版社, 2009.
[12]胡啟章編著,“電化學的方法與原理”
[13]X. M. Lin, X. G. Zhang, “NiO-based composite electrode with RuO2 for electrochemical capacitors”,Electrochimica Acta, 49, pp.229-232, 2004.
[14]K. Dai, L. Shi, D. Zhang, J. Fang, “NaCl adsorption in multi-walled carbon nanotube/active carbon combination electrode”, Chemical Engineering Science, 61, pp. 428-433, 2006.
[15]J. Gamby…etc, “Influence of carbon nanotubes addition carbon-carbon super capacitor performances in organic electrolye”, J.Power Sources, 101, pp. 109-116, 2001.
[16]C. Portet…etc, “Influence of carbon nanotubes addition carbon-carbon super capacitor performances in organic electrolye”, J.Power Sources, 139, pp. 371-378, 2005.
[17]Chan Kim, “Electrochemical characterization of electrospun activated carbon nanofibers as an electrode in super capacitor”, J.Power Sources, 142, pp. 382-388, 2005.
[18]Y. K. Choi, K. I. Sugimoto, S. M. Song, M. Endo, “Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composites and sheets”, Materials Letters, 59, pp.3514-3520, 2005.
[19]謝宏和,“氧化鎳/奈米碳纖維電極材料合成及其電化學電容器特性探討”, 國立高雄應用科技大學化學工程材料工程系碩士班碩士論文, 2007.
[20]林坤壕,“電泳動沉積氧化鎳複合電極及其電化學電容器特性探討”,國立高雄應用科技大學化學工程材料工程系碩士班碩士論文, 2009.
[21]Chiang C K, Fincher C R, Park Y W, et al. “Electrical conductivity in doped poly-acetylene”, Phys. Rev. Lett., 39, pp. 1098-1101, 1997.
[22]陳壽安,“導電高分子: 新世代光電材料”,物理雙月刊, 23 卷, 2期, 4月, 2001.
[23]陳壽安,“從導電高分子之發展談: 啟發、創意與突破”,國立清華大學化工系.
[24]林巡,“添加奈米碳材釕鉭氧化物作為超高電容器複合電極之研究”,國立高雄應用科技大學化學工程與材料工程系碩士班碩士論文, 2008.
[25]N. G. Shang, F. C. K. Au, X. M. Meng, C. S. Lee, I. Bello, S. T. Lee,“Uniform carbon nanoflake films and their field emissions”,Chemical Physics Letters, 358, pp. 187-191, 2002.
[26]J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C.Holloway, “Synthesis of carbon nanosheets by inductively coupledradio-frequency plasma enhanced chemical vapor deposition”,Carbon, 42, pp. 2867-2872, 2004.
[27]M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V.Shutthanandan, D. M. Manos, “A mechanism for carbon nanosheet formation”, Carbon, 45, pp. 2229-2234, 2007.
[28]G. T. Zhou, Q. Z. Yao, X. Wamg, J. C. Yu, “Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide”, Materials Chemistry and Physics, 98, pp.267-272, 2006.
[29]Y. Sun, J. Pan, P. Wan, X. Liu, “The proton exchange chemistry of layered Ni(OH)2 for two types of high-capacity cathode materials in rechargeable batteries”, Materials Research Bulletin, 44, pp. 227,2009.
[30]C. Natarajan, S. Ohkubo, G. Nagami, “Influence of film processing temperature on the electrochromic properties of electrodeposited nickel hydroxide”, Solid State Ionics, 86, pp. 949, 1996.
[31]K. C. Liu, M. A. Anderson, “Porous nickel oxide/nickel films for electrochemical capacitors”, Journal of the Electrochemical Society,143, pp. 124, 1996.
[32]G. J. C. Carpenter and Z. S. Wronski, “Nanocrystalline NiO and NiO-Ni(OH)2 composite powders prepared by thermal and mechanical dehydroxylation of nickel hydroxide”, Nanostructured Materials, 11, pp. 67, 1999.
[33]K. K. Purushothaman, G. Muralidharan, “The effect of annealing temperature on the electrochromic properties of nanostructured NiO films”, Solar Energy Materials & Solar Cells, 93, pp. 1195, 2009.
[34]J.Zhang, L. Gao, “Synthesis and characterization of nanocrystalline tin oxide by sol-gel method”, Journal of Solid State Chemistry, 177,pp. 1425-1430, 2004.
[35]W. Xing, F. Li, Z. F. Yan, G. Q. Lu, “Synthesisof and electrochemical properties mesoporous nickel oxide”, Journal of Power Sources, 134, pp. 324-330, 2004.
[36]P. S. Patil, L. D. Kadam, “Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films”, Applied Surface Science,199, pp. 211-221, 2002.
[37]W. Xing, F. Li, Z. F. Yan, H. M. Cheng, G. Q. Lu, “Synyhesis of wormlike nanoporous nickel oxide with nanocrystalline framework for electrochemical energy storage”, International Journal of Nanoscience, 3, pp. 321-329, 2004.
[38]M. W. Mehren, R. Oesten, P. Wilde, R. A. Huggins, “The mechanism of electrodeposition and operation of Ni(OH)2 layers”, Solid State Ionics, 86-88, pp. 841-847, 1996.
[39]Y. G. Wang, Y. Y. Xia, “Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15”, Electrochimica Acta, 51, pp. 3223-3227, 2006.
[40]C. C. Yang, “Sythesis and characterization of active materials of Ni(OH)2 powders”, International Journal of Hydrogen Energy, 27,pp. 1071-1081, 2002.
[41]H. Kamal, E. K. Elmaghraby, S. A. Alic, K. A. Hady, “Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis”, Journal of Crystal Growth, 262, pp. 424-434, 2004.
[42]S. M. Lipka, “Electrochemical capacitors utilizing low surface area carbon fiber”, Institute of Electrical and Electronics Engineers, pp.245-248, 1997.
[43]J. Y. Lee, K. Liang, K. H. Ana, Y. H. Lee, “Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance”,Synthetic Metals, 150, pp. 153-157, 2005.
[44]G. H. Yuan, Z. H. Jiang, A. Aramata, Y. Z. Gao, “Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide”, Carbon, 43, pp. 2913-2917, 2005.
[45]C. R. Magana, D. R. Acosta, A. J. Martinze, J. M. Ortega,“Electrochemically induced electrochromic properties in nickel thin film deposited by DC magnetron sputtering”, Solar Energy, 80, pp.161-169, 2006.
[46]M. S. Wu, H. H. Hsieh, “Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors”, Electrochimica Acta, 53, pp. 3427-3435, 2008.
[47]M. S. Wu, C. Y. Huang, K. H. Lin, “Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors”,Journal of Power Source, 186, pp. 557-564, 2009.
[48]J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, 142, pp. 2699-2703, 1995.
[49]M. Carlen, R. Kotz, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, 45, pp. 2483-2498, 2000.
[50]MITSUHIRO N, “Influence of physical properties of activated carbons on characterization of electric double-layer capacitors”,Journal of Power Sources, 60, pp. 225-231, 1996.
[51]YUKARI K, “Fabrication of high-power electric double-layer capacitors”, Journal of Power Sources, 60, pp.219-224, 1996.
[52]B. Ferrari, R. Moreno, P. Sarkar, P. S. Nichilson, “Electrophoretic Deposition of MgO from Organic Suspension”, J. Eur. Ceram. Soc.20, pp. 99-106, 2000.
[53]R. Boccaccini, Johann Cho, “Electrophoretic deposition of carbon nanotubes”, Carbon, 44, pp. 3149-3160, 2006.
[54]李建武等合編“藝軒圖書出版社: 生物化學實驗原理和法” ,p.114-146, 1999.
[55]O. Omer, V. D. Biest, J. L. Vandeperre, “Electrophoretic deposition of materials”, Annu. Rev. Mater. Sci., 29, pp. 327-352, 1999.
[56]Zhitomirsky, “Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers”, J. Eur. Ceram. Soc., 18, pp.849-856,1998.
[57]J. H. Jean, “Electrophoretic deposition of Al2O3-SiC composite”,Materials Chemstry and Physics, 40, pp. 285-290, 1995.
[58]R. N. Basu, M. J. Mayo, C. A. Randall, “Free standing sintered ceramic films from electrophoretic deposition”, Jpn. J. Appl. Phys.,38, pp. 6462-6465, 1999.
[59]R. W. Powers, “The electrophoretic forming of beta-alumina ceramic”, J. Electrochem. Soc., 122, pp. 490-500, 1975.
[60]I. Zhitomirsky, L. Gal-Or, “Formation of hollow fibers by electrophoretic depsition”, Materials Letters, 38, pp. 10-17, 1999.
[61]F. Harbach, H. Nienburg, “Homegeneus functional ceramic components through electrophoretic deposition from stable colloidal suspensions”, J. Eur. Ceram. Soc., 18, pp. 675-683 & pp. 685-692,1998.
[62]黃士瑋,“使用電泳沉積研究加工改善放電微孔精度之研究”,中央大學機械工程研究所碩士論文, 2003.
[63]陳昱豪,“利用電泳沉積法製作三極式場發射元件”,大同大學光電工程研究所碩士論文, 2011.
[64]A. Sussman, T. J. Ward, “Electrophoretic deposition of coatings from glass-isopropanol slurries”, RCA Review, 42, pp. 178-197, 1981.
[65]B. Chapman, “Glow Discharge Process”, John Wiley&Sons, New York,(1980)p49.
[66]A. Grill, Cold Plasma in Materials Fabrication,IEEE Press, New York,(1994).
[67]D. S. Richerby, and A. Matthews , “Advanced Surface Coatings: A Handbook of Surface Engineering”,Chapman and Hall, New York,(1991) p92.
[68]M. Ohring, “The Materials Science of Thin Films Academic Press”,(1992).
[69]PINTEK- 函數波信號產生器型號FG-52http://www.tecpel.com/FG-52C.html .
[70]PINTEK-高壓放大器型號HA-805 www.pintek.com .
[71]M. S. Wu, Y. A. Huang, and C. H. Yang, “Capacitive behavior of orous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition”, Journal of the Electrochemical Society, 155, pp. 798, 2008.
[72]W. Zhu, G. P. Kochanski, S. Jin “Low-Field Electron Emission from undoped Nanostructured Diamond”, Science, 282, pp.1471 (1998).
[73]S. Wang, J. Wang, Peter Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices”,Applied Physics Letters, 89, pp. 183103 (2006).
[74]S. Prawer *, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill,J.L. Peng,“The Raman spectrum”, Chemical Physics Letters, 332 , pp.93–97 (2000).
[75]蘇裕凱,“利用射頻磁控濺鍍法在玻璃基板上沉積氧化鎳/奈米碳片以作為超級電容之應用”, 大同大學光電工程研究所碩士論文,2012.
[76]Zhao Longzhi,“Finite element analysis of the open-cell nickel foam based on the Kelvin model” ,East China Jiaotong University ,(2009).
[77]Y.E. Chen, “Preparation of NiO nanoparticles as supercapacitor electrode by precipitation using carbon black powder” ,Shanghai University , China,(2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文