跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何豐州
研究生(外文):Feng-Zhou He
論文名稱:利用分子束磊晶法成長硒化錫化合物薄膜與特性分析
論文名稱(外文):Growth and Characteristics of SnSex Thin Films by Molecular Beam Epitaxy
指導教授:楊祝壽
指導教授(外文):Chu-Shou Yang
口試委員:楊祝壽
口試委員(外文):Chu-Shou Yang
口試日期:2015-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:41
中文關鍵詞:反射式電子高能繞射硒化錫分子束磊晶X-光繞射拉曼光譜
外文關鍵詞:RamanXRDRHEEDSnSe2SnSeMBE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,利用分子束磊晶(MBE)法,可在c軸藍寶石基板上成長大面積的SnSex與具(001)優選方向之SnSe2薄膜。長晶過程中,透過反射式高能量電子繞射 (RHEED)對薄膜進行繞射圖案的即時觀察與量測,並進一步透過X光繞射檢測晶體結構。研究結果指出,條狀繞射圖案顯示SnSe2薄膜為結晶態,a軸方向之晶格常數值為3.71±0.1埃,c軸方向的晶格常數值為6.15埃,c/a為1.685,此數值與硒化二錫結晶一致。薄膜的組成、表面形貌及電學特性則透過拉曼光譜、掃描式電子顯微鏡及四點探針測量。此外,本研究使用X射線光電子能譜儀(XPS)進行基板溫度與薄膜配比組成分析。研究結果顯示,在成長期間,基板溫度低於400℃較易成長出硒化二錫相,硒化二錫薄膜的最佳化成長條件在基板溫度為300℃,錫溫度為980℃與硒溫度為203℃時,在此條件下可成功純化出硒化二錫薄膜。
In this work, the fabrication of SnSex and (001)-oriented SnSe2 thin films on c-sapphire by molecular beam epitaxy (MBE) was studied. The growth processes were monitored by in situ reflection high energy electron diffraction (RHEED). Streaky RHEED patterns of SnSe2 show the films were flat. The lattice constant of a-axis was approximately 3.71 ± 0.1Å, which is consistent with that of SnSe2 crystalline. The crystal structure was also observed by X-ray diffraction (XRD) analysis for lattice constant c of 6.15Å, the c/a = 1.685. The SnSex films were measured by using Raman spectrum, SEM and four point probe method for components, morphology and electric properties. In addition, the relationship between stoichiometry and substrate temperature was investigated by X-ray photoelectron spectroscope (XPS). At temperature < 400℃, SnSe2 phase films was grown. The growth conditions of SnSex thin film were observed in this research, the optimization conditions of SnSe2 thin films are substrate temperature = 300℃, Tin cell temperature = 980℃, Selenium cell temperature = 203℃. At the conditions, the SnSe2 single phase thin films were deposited successfully.
誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables viii
Chapter1:Introduction 1
1.1 SnSe Compound: Introduction 1
1.1.1 Structure properties and applications of SnSe 1
1.1.2 Bulk and thin films preparation of SnSe single crystalline 2
1.2 SnSe2 Compounds: Introduction 3
1.2.1 Structure properties and applications of SnSe2 3
1.2.2 Bulk and thin films preparation of SnSe2 single crystalline 4
1.3 Summary 6
Chapter2:Experiments 8
2.1 Experimental Instrument 8
2.1.1 The MBE system 8
2.1.2 The RHEED system 10
2.1.3 X-ray diffraction (XRD) 11
2.1.4 X-ray photoelectron spectroscpose (XPS) 13
2.1.5 Scanning electron microscope (SEM) 14
2.1.6 The micro-Raman system 15
2.1.7 Four point probe measurement system 16
2.2 Growth and Characterization Analysis of SnSeX Thin films 17
Chapter3: Results and Discussions 21
3.1 Substrate Temperature Effect 21
3.2 Optimization of Growth Temperature 27
3.2.1 Selenium temperature effect 27
3.2.2 Tin temperature effect 30
Chapter4: Conclusions 36
References 37
[1] Mingsheng Xu, Tao Liang, Minmin Shi, & Hongzheng Chen. (2013). Graphene-like two-dimensional materials. Chem. Rev., 113, 3766−3798.
[2] Julien, C., Eddrief, M., Samaras, I., & Balkanski, M. (1992). Characterizations of SnSe, SnS2 and SnSe2 single crystals. Material Science and Engineering, B15, 70-72
[3] Li-Dong Zhao, Shih-Han Lo, Yongsheng Zhang, Hui Sun, Gangjian Tan1, Ctirad Uher, C. Wolverton, Vinayak P. Dravid & Mercouri G. Kanatzidis. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Natural Letter, 508, 373-378.
[4] Makori, N. E., Amatalo, I. A., Karimi, P. M., & Njoroge, W. K. (2014). Optical and electrical properties of SnSe thin films for solar cell applications. American Journal of Condensed Matter Physics, 4(5), 87-90.
[5] Ajay Agarwal, Sunil H. Chaki, & D. Lakshminarayana. (2007). Growth and thermal studies of SnSe single crystals. Materials Letters, 61, 5188–5190
[6] Corinna Grosse, Ryan Atkins, Holm Kirmse, Anna Mogilatenko, Wolfgang Neumann, & David C. Johnson. (2013). Local structure and defect chemistry of [(SnSe)1.15]m(TaSe2) ferecrystals – A new type of layered intergrowth compound. Journal of Alloys and Compounds, 579, 507–515.
[7] Shuli Zhao, Huan Wang, Yu Zhou, Lei Liao, Ying Jiang, Xiao Yang, Guanchu Chen, Min Lin, Yong Wang, Hailin Peng, & Zhongfan Liu Heidelberg. (2015). Controlled synthesis of single-crystal SnSe nanoplates. Nano Research , 8, 288-295.
[8] Nicolas D. Boscher, Claire J. Carmalt, Robert G. Palgrave, & Ivan P. Parkin. (2008). Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films, 516, 4750–4757.
[9] Kyung-Min Chung, Daniel Wamwangi, Michael Woda, Matthias Wuttig, & Wolfgang Bensch. (2008). Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J. Appl. Phys, 103(083523), 1-7.
[10] Manou P., Kalomiros, J. A., Anagnostopoulos, A. N. & Kambas K. (1996). Optical properties of SnSe2 single crystals. Materials Research Bulletin, 31(11), 1407-1415.
[11] Yuan Huang, Eli Sutter, Jerzy T. Sadowski, Mircea Cotlet, Oliver L.A. Monti, David A. Racke, Mahesh R. Neupane, Darshana Wickramaratne, Roger K. Lake, Bruce A. Parkinson, & Peter Sutter. (2014). Tin disulfide; an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACSNANO, 8(10), 10743–10755.
[12] Jaewon Choi, Jaewon Jin, Gu Jung, Jung Min Kim, Hae Jin Kim, & Seung Son . (2011). SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries. Chem. Commun.,47, 5241–5243.
[13] Yang Su, Mona A. Ebrish, Eric J. Olson, & Steven J. Koester. (2013). SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett., 103, 263104.
[14] Mingda Li, David Esseni, Gregory Snider, Debdeep Jena, Huili Grace Xing. (2014). Two-dimensional heterojunction interlayer thin-TFETs. Journal of Electron Devices Society 3(3), 200 – 207.
[15] Joy George, & valsalkai jma, C. K. (1986). Optical, electrical and morphological studies of SnSe2, crystals grown by physical vapour transport method, Cryst. Res.Technol., 21, 273-278.
[16] Jaesung Han, Soyoung Jeon, & Woo Kyoung Kim. (2013). Selenization mechanisms of Sn and Zn investigated using in situ high-temperature X-ray diffraction. Thin Solid Films, 546, 321–325.
[17] Fernandes, P. A., Sousa, M. G., Salomé, P. M. P., Leitãoa, J. P., & da Cunhaa, A. F. (2013). Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization ofmetal precursors. CrystEngComm, 15, 10278–10286.
[18] Toshihiro Shimada, Fumio S. Ohuchi, & Bruce A. Parkinson. (1992). Thermal decomposition of SnS2 and SnSe2: Novel molecularbeam epitaxy sources for sulfur and selenium. Journal of Vacuum Science & Technology A 10, 539-542
[19] Toshihiro Shimada, Fumio S, Ohuchi, & Atsushi Koma. (1993). Molecular beam epitaxy of SnSe2: chemistry and electronic properties of interfaces. Jpn. J. Appl. Phys. 32, 1182-1185.
[20] Schlaf, R., Louder, D., Lang, O., Pettenkofer, C., Jaegermann, W., Nebesny, K. W., Lee, P. A., Parkinson, B. A., & Armstrong N. R. (1995). Molecular beam epitaxy growth of thin films of SnS2 and SnSe2 on cleaved mica and the basal planes of single crystal layered semiconductors: Reflection high energy electron diffraction, low energy electron diffraction, photoemission, and scanning tunneling microscopy/atomic force microscopy characterization. Journal of Vacuum Science & Technology, A13, 1761-1767.
[21] Kegao Liu, Hong Liu, Jiyang Wang, & Liming Feng. (2009). Synthesis and characterization of SnSe2 hexagonal nanoflakes. Materials Letters 63, 512–514.
[22] Liang Huang, Yifei Yu, Chun Li, & Linyou Cao. (2013). Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2 J. Phys. Chem. C, 117, 6469−6475.
[23] Shin-Ying Lin (2013) Growth and characterization of CuSnSe thin films by molecular beam epitaxy (Master’s thesis) Tatung University, Institute of Electro-Optical Engineering.
[24] Volodin, V. N., Burabaeva, N. M., & Trebukhov, S. A. (2014). Liquid–vapor phase equilibrium in a tin–selenium system. Russian Journal of Physical Chemistry A, 88 (12), 2029–2034.
[25] Okamoto. (1998). Supplemental literature review: section III Se-Sn (Selenium-Tin). Journal of Phase Equilibria ,19 (3), 293.
[26] Bordovskioe, G. A., Castro, R. A., Seregin, P. P., & Terukov, E. I. (2007). Electrical properties and structure of chalcogenide glasses containing bivalent tin. Electronic and Optical Properties of Semiconductors, 41(1), 23–26.
[27] Briggs, D., & Seah, M.P. (1993). Practical Surface Analysis, Second Edition, New York: John Wiley and Sons.
[28] Smith, A. J., Meek, P. E., & Liang, W. Y. (1997). Raman scattering studies of SnS2 and SnSe2. J. Phys. C: Solid State Phys., 10, 1321-1333.
[29] Chandrasekhar H. R., Humphreys R. G., Zwick U., & Cardona. M. (1977). Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys. Rev. B: Solid State, 15, 2177–2183.
[30] Trifonova, E. & Yanchev, I. Y. (1996). Growth and characterization of SnSe2. Journal of Materials Science, 31, 3647-3649.
[31] Mircea Guina. (2013). Molecular Beam Epitaxy: technology and applications. Optoelectronics Research Centre, Tampere University of Technology.31.
[32] Ghorbani-Asl, M., Enyashi, A. N. n, Kuc, A., Seifert, G., & Heine, T. (2013). Defect-induced conductivity anisotropy in MoS2 monolayers. Phys. Rev., B 88, 245440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top