跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳家興
研究生(外文):Chia-Hsing Wu
論文名稱:利用分子束磊晶成長硒化物之特性分析
論文名稱(外文):Growth and Characteristics of Selenide Compounds by Molecular Beam Epitaxy
指導教授:楊祝壽
指導教授(外文):Chu-Shou Yang
口試委員:楊祝壽
口試委員(外文):Chu-Shou Yang
口試日期:2015-07-30
學位類別:博士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:105
中文關鍵詞:X光繞射拉曼反射式高能量電子束繞射二硒化銅鎵硒化鎵摻鋅硒化鎵摻銅硒化鎵分子束磊晶穿透式電子顯微鏡掃描式電子顯微鏡
外文關鍵詞:RamanXRDRHEEDCuGaSe2GaSe doped Zn and CuGaSeMBETEMSEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨於探討製作二硒化銅鎵薄膜以及二維材料硒化鎵薄膜特性。針對二硒化銅鎵薄膜,利用分子束磊晶成長法成長二硒化銅鎵在砷化鎵基板上,製作一系列不同金屬組成比的之硒化銅鎵薄膜,尋找最佳的成長條件。在不同的金屬組成比的樣品中,利用掃瞄式電子顯微鏡可以發現當摻雜銅的配比較少時的二硒化銅鎵薄膜在表面是形成片狀結構的圖形,是近似於硒化鎵薄膜的層狀結構;當提升銅/(銅+鎵)的配比到0.48,亦即達到化學當量比的二硒化銅鎵,表面形成黃銅礦結構的正方型;當配比達到0.75時,表面呈現出雜亂無序的不規則形狀,這意味著此有很多缺陷存在於薄膜中。上述結果說明了表面形貌變化由硒化鎵的岩片狀結構轉變為立方體結構的二硒化銅鎵。在光激螢光譜的分析中,低濃度的銅在光譜中顯示著有很多螢光訊號混合在一起的波鋒(1.4~1.6 eV),然而在化學當量比的二硒化銅鎵中,螢光主峰值藍移到1.71 eV,為硒化銅鎵的自由激子螢光。藉由成長在砷化鎵基板上的硒化銅鎵薄膜,找出成長硒化銅鎵之最佳條件及配比後,可以省去直接成長在不鏽鋼基板上所要調整的時間,可以更快速進一步去探討二硒化銅鎵成長在不鏽鋼基板上。
在不鏽鋼基板中有兩大編號: 304與430。這兩個系列的差別在於摻雜鉻的元素多寡。在成長的過程中,此兩塊樣品是在分子束磊晶腔體內同時成長且固定所有可變動的參數。在拉曼光譜中可以觀察到兩塊樣品同時擁有二硒化銅鎵與硒化銅的訊號。在低溫光激螢光譜下觀察到除了自由激子的躍遷,還有施子與受子電子電洞對的躍遷,在電子電洞對的躍遷當中發現其訊號有位移,推測原因來自兩塊基板的熱導率不同所造成的差異性。在變溫的光激螢光譜中,可以計算出二硒化銅鎵成長在不同系列的不鏽鋼基板的活化能,其中二硒化銅鎵薄膜在304基板上的活化能為30 meV,在430基板上的為41meV,這說明了二硒化銅鎵薄膜成長在430系列的不銹鋼基板上較佳。
在硒化鎵的研究主題,利用分子束磊晶法在藍寶石基板上成長大面積超薄二維材料硒化鎵結構,藉此研究各種效應對於成長機制的影響。我們發現對於二維材料之凡德瓦力結構而言,介面的平整度是影響成長硒化鎵薄膜的基礎條件之一,而500 oC是成長薄膜最理想的基板溫度。藉由反射式高能量電子繞射分析儀去觀察開始磊晶薄膜到結束磊晶的整個過程,了解成長二維材料硒化鎵薄膜的磊晶動力學,在繞射的圖中觀察到當磊晶薄膜15分鐘時,觀察到六角結構的硒化鎵出現兩個不同的軸向,分別為a軸及m軸方向( ),針對雙軸繞射的發現,由繞射圖所計算出來晶格常數為 a=0.375±0.012 奈米。藉由穿透式電子顯微鏡,了解整個硒化鎵薄膜是層與層的原子排列結構及基板與薄膜的介面無任何缺陷。經傅立葉轉換後,發現與反射式高能量電子繞射分析儀有相同的雙軸向存在,這證明二維材料硒化鎵在磊晶會發生雙軸的交錯堆疊。然而針對硒化鎵薄膜結晶狀況,進一步做了X-ray晶體繞射分析,發現規律的Wurtzite結構繞射圖,分別是 (0002)、(0004)、(0006)、(0008)、(0010)、(0012)。藉由搖擺曲線(rocking curve) 量測法,量測繞射譜訊號的半高寬來得知樣品的結晶狀況,其全波半寬最窄為207 arcsec。由此證明,可利用分子束磊晶成長出單晶的二維材料硒化鎵薄膜。
此外,為了製作光偵測器的元件,我們去改善了硒化鎵的電學性質,硒化鎵本質的導電率為9.6×10-7(Ω× cm) -1。藉由摻雜少量銅或鋅原子在硒化鎵薄膜中去改善電性,所有摻雜的系列不論是銅或是鋅都比原本未參雜的硒化鎵薄膜的導電率好,其中在參雜鋅的系列當中出現最好的導電率為1.6×10-4 (Ω×cm) -1。這比為參雜的硒化鎵薄膜高出1000倍。
在未來研究中,我們將藉由磊晶時間的改變來控制硒化鎵薄膜的層數,以及最終目標利用金屬-二維材料-金屬的結構來製作光電感測器,將超薄二維材料硒化鎵薄膜製作成光電感測器元件。
This dissertation is devoted to CuGaSe2 and GaSe thin films grown using molecular beam epitaxy. For CuGaSe2 thin films, the growth and physical properties were studied. CuGaSe2 were obtained with varying metallic ratio of (Cu/Cu+Ga) from 0.23 to 0.75. When the metallic ratio increases from 0.23 to 0.75, surface morphology of CuGaSe2 thin films implies the transformation of crystal structure from GaSe-like to CuGaSe2 (Cu-rich). The optical performances exhibit the optimum growth condition for CGSe2 is obtained. Following, this condition is used to grow CuGaSe2 thin films on molybdenum coated stainless steel(SS) substrate. Two kinds of stainless steel substrates (304SS、430SS ) were used. The different of stainless 430SS and 304SS is the content with/ without chromium (Cr), respectively. CuGaSe2 and Cu2-xSe phases were observed by Raman scattering measurement. The photoluminescence emission of donor-acceptor pair exhibits a red shift, which implies the different of content ratio in these samples. Temperature dependence PL was used to measure activation energy of CGS grown on two substrates. The activation energy (Ea) of CGS2 grown on 430SS and 304SS were estimated as 41 and 30 meV. The CuGaSe2 thin film growth on 430SS was better than 304SS substrate.
The second parts focus on the growth of GaSe epitaxial single crystal thin films. The GaSe epilayer during growth were monitored by in situ reflection high-energy electron diffraction (RHEED). Streak RHEED patterns demonstrated a flat and crystalline sample surface Lattice constant in a-axis was approximately 0.375±0.012 nm, which was correspondedwith single-crystal GaSe. Furthermore, two kinds structure of GaSe thin films which were correlated with the m-axis and a-axis of hexagonal was observed by RHEED after 15 min. The single crystal GaSe was verified using X-ray diffraction and high-resolution cross-section transmission electron microscopy. The full width at half-maximum of peak (0002) which was defined in the XRD rocking-curve spectrum of GaSe epilayer was obtain around 207 arcsec. The epitaxial growth of GaSe demonstrated the feasibility of growing large-area ultrathin epilayers.
The surface effect of selenium pretreated sapphire substrate (Se-sapphire) at low temperature (500℃) was investigated. GaSe thin films were deposited on Se-sapphire. The growth rate of GaSe/Se-sapphire was 5 times than GaSe/sapphire. It implies that Se terminated sapphire surface assisted GaSe deposition.
Moreover, the improvement conductivity of GaSe was investigated by doping copper and zinc. The conductivity of intrinsic GaSe, GaSe:Cu, and GaSe:Zn were 10-7, 10-6, and 10-4 (Ω×cm)-1, respectively, by four point probe measurement. The reason is the incorporation of metal cations (Cu and Zn) increasing hole concentration. The crystal structure became worse when the concentration of dopant increased, especially in the doped copper series.
In future work, based on these works, the ultra-thin film of the epitaxial will be demonstrated. Finally, the photocurrent in metal-semiconductor-metal (MSM) photo-detectors based on layered GaSe will be generated.
中文論文摘要 i
Abstract iv
(Acknowledgments)誌謝 vii
Contents ix
Table Captions xiii
List of Figures xiv
Chapter 1 Introduction 1
1-1 Introduction of selenide history and application 1
1-2 Motivation 7
1-3 Outline of This Dissertation 9
Chapter 2 Literature Review 12
2-1 Selenide Compounds 12
2-1.1 Crystal properties of CuGaSe2 15
2-1.2 Properties of 2D Gallium Selenide (GaSe) 17
2-2 Selenide application 21
2-2.1 solar cell 21
2-2.2 Properties of 2D GaSe 23
Chapter 3. Growth and Characterization Analysis of CuGaSe2 thin Films 24
3-1 Introduction 25
3-2 Optimum CuGaSe thin films 28
3-2.2 Growth procedures on GaAs Substrate 29
3-2.3 CGS2 of Surface Morphology 30
3-2.4 Optical properties of CGSe2 32
3-3 Influence of stainless steel in CuGaSe2 films 35
3-3.1 Stainless Steel Substrate Properties 35
3-3.2 Growth procedures on Stainless Steel Substrate 35
3-4 Results and discussion 36
3-5 Summary 41
Chapter 4. Epitaxial Growth of Layered GaSe Single Crystal on c-Sapphire 43
4-1 Introduction 44
4-2 Experiment _Sample Growth 46
4-3 Results and discussion 48
4-3.1 Optimum Growth Temperature 48
4-3.2 Effect of Substrate Surface Selenization 50
4-3.3 Characteristic of As-Grown GaSe Epilayer 52
4-4 Summary 60
Chapter 5. Conductivity Improvement of GaSe 61
5-1 Introduction 61
5-1.2 Sample Growth of GaSe:Cu and GaSe:Zn 62
5-1.3 Conductivity of GaSe:(Cu or Zn) 63
5-4 Conclusion 65
Chapter 6 Conclusions 66
Future work 69
GaSe growth on GaN/sapphire 69
GaSe growth on ZnSnO(ZTO)/sapphire 71
Appendix 74
Experiments and Techniques 74
Molecular Beam Epitaxy (MBE) 75
Characterization techniques 78
Photoluminescence (PL) 78
X-ray Diffraction System 80
Scanning electron microscope (SEM) 84
Atomic force microscopy (AFM) 86
Raman scattering measurement 88
Reflectance and Transmittance 90
Transmission Electron Microscopy (TEM) 92
Four point Hall measurements (Hall effects) 94
Reference: 96
[1]H. Wenisch, K. Schull, T. Behr, D. Hommel, G. Landwehr , D. Siche, P. Rudolph, and H. Hartmann, J. Cryst. Growth. 159, 26 (1996).
[2]K. Ohkawa, M. Behringer, H. Wenisch, M. Fehrer, B. Jobst, D. Hommel, M. Kuttler, M. Strassburg, D. Bimberg, G. Bacher, D. Tonnies, and A. Forchel, Phys. Status Solidi. B, 202, 683 (1997).
[3]K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine, and T. Shirakawa, J. Cryst. Growth. 214, 1064 (2000).
[4]M. S. Hossaina, N. Amin, M. A. Matin. Chalcogenide letters. 8, 296-299 (2011).
[5]G. Gordillo and C. Calderón, Solar Energy Materials and Solar Cells, 77, 163 (2003).
[6]T Nakada and S Shirakata, Solar Energy Materials and Solar Cells, 95, 1463 (2011)
[7]H Yamamoto and Y Takaba, Solar Energy Materials and Solar Cells, 74, 525 (2002)
[8]W. Rong, G. Zengliang and W. Guangpu, Solar Energy Materials and Solar Cells, 90, 1052 (2006)
[9]http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[10]Ngrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To , and Rommel Noufi, Prog. Photovilt: Res. Appl. 16, 235 (2008).
[11]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science. 306, 666 (2004).
[12]Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, ACSNANO. 8, 1485 (2014).
[13]R. Rudolph, Y. Tomm, C. Pettenkofer, A. Klein, W. Jaegermann, Appl. Phys. Lett, 76, 1101 (2000).
[14]Z. R. Dai, S. R. Chegwidden, L. E. Rumaner, F. S. Ohuchi, J. Appl. Phys, 85, 2603 (1999).
[15]Ting Cao, Zhenglu Li, and Steven G. Louie, Tunable Magnetism and Half-Metallicity in Hole-doped Monolayer GaSe
[16]Campos CEM, de Lima JC, Grandi TA, Machado KD, and Pizani PS, Solid State Commun. 126, 611 (2003).
[17]NB. Singh, DR. Suhre, W. Rosch, R. Meyer, M. Marable, NC. Fernelius, FK. Hopkins, DE. Zelmon, and R .Narayanan , J. Cryst. Growth. 198, 588 (1999).
[18]NB. Singh, DR. Suhre, V. Balakrishna, M. Marable, R. Meyer, NC. Fernelius, FK. Hopkins, and D. Zelmon, Prog. Cryst. Growth. 37, 47 (1998).
[19]D. J. Late , B. Liu , J. Luo , A. Yan , H. S. S. Ramakrishna Matte , Matthew Grayson , C. N. R. Rao, and Vinayak P. Dravid , Adv. Mater. 24, 3549 (2012).
[20]C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, Optics Express. 14, 10636 (2006).
[21]W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Optics Letters. 27, 16 (2002).
[22]J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, Applied Physics Letters. 103, 081104 (2013).
[23]P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, ACSNANO. 6, 5988 (2012).
[24]S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Nano Lett. 13, 2777 (2013).
[25]Y. Zhou, Y Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Zhongfan Liu, and Hailin Peng, ACSNANO. 8, 1485 (2014).
[26]S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Nano Lett. 13, 2777 (2013).
[27]P. Hu , Z. Wen , L. Wang , P. Tan , K. Xiao. ACSNANO. 6, 5988 (2012).
[28]Y. Cao1, K. Cai1, P. Hu, L. Zhao, T. Yan, W. Luo, X. Zhang, X. Wu, K. Wang and H. Zheng, Scientific Reports. 5, 8130 (2015).
[29]J. E. Jaffe and Alex Zunger, Phys. Rev. B, 28, 5822 (1983).
[30]Mingsheng Xu, Tao Liang, Minmin Shi, & Hongzheng Chen. (2013). Graphene-like two-dimensional materials. Chem. Rev., 113, 3766−3798.
[31]P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt:. Res. Appl. 19, 894 (2011).
[32]Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen.. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766 (2013).
[33]Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
[34]C. Rincón and F. J. Ramírez, J. Appl. Phys. 72, 4321 (1992).
[35]M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, and K. Domen, J. Am. Chem. Soc. 135, 3733 (2013).
[36]R. Rudolph, Y. Tomm, C. Pettenkofer, A. Klein, W. Jaegermann, Appl. Phys. Lett, 76, 1101 (2000).
[37]Z. R. Dai, S. R. Chegwidden, L. E. Rumaner, F. S. Ohuchi, J. Appl. Phys, 85, 2603 (1999).
[38]Kuhn, R. Chevalier, A. Rimsky, Physica Status Solidi, Sectio A: Applied Research, 31, 469 (1975).
[39]Madelung, "Semiconductors : Data Handbook", Springer, 1775.
[40]R. M. Hoff, J. C. Irwin, Phys. Rev. B, 10, 3464 (1974).
[41]白世璽, 儀科中心簡訊 奈米技術組, 87期, 8 (2008).
[42]J. P. Voitchovsky, A. Mercier :Acta Crystallogr. B, 31, 2841 (1975).
[43]J. Camassel, P. Merle, H. Mathien, A. Gouskov, Phys. Rev. B, 19, 1060 (1976).
[44]F. Moose, M. Schluter, Nuovo Cimento B, 22, 273 (1974).
[45]R. L. toullec, M. Besson, M. J., Phys Letter A, 55, 245 (1975).
[46]R. Minder, G. Ottaviani, C. Canali, Phys Chem. Solids, 37, 135 (1976).
[47]H. Hahn, W. Klinger, Z. Anorg. Chem. 259 (1949).
[48]T. Okamoto, N. Kojima, A. Yamade, M. Konagai, K. Takahashi,Jpn. J. Appl. Phys. Part2 (Letters), 31, L143 (1992).
[49]Kenji Yoshino, Mutsumi Sugiyama, Daisuke Maruoka, Shigefusa F. Chichibu, Hironori Komaki, Kenta Umeda, Tetsuo Ikari ,Physica B. 302 ,357 (2001).
[50]M. Saad, University of Konstanz, (1995).
[51]A. Yamada, Y. Makita, S. Niki, and A. Obara, J. Appl. Phys. 79, 15 (1996).
[52]C. Rincón and F. J. Ramírez, J. Appl. Phys. 72, 4321 (1992).
[53]C. Rincón and F. J. Ramírez, J. Appl. Phys. 72, 4321 (1992).
[54]S. Chichibu, Y. Harada, M. Uchida, T. Wakiyama, S. Matsumoto, S. Shirakata, S. lsomura, and H. Higuchi, J. Appl. Phys. 76, 3009 (1994)
[55]G.L. Gu, B.H. Tseng, H.L. Hwang, Journal of Physics and Chemistry of Solids. 64, 1901 (2003)
[56]A. Jasenek, U. Rau, V. Nadenau, and H. W. Schock, J. Appl. Phys. 87, 1, (2000)
[57]V. Nadenau, U. Rau,a) A. Jasenek, and H. W. Schock, J. Appl. Phys. 87, 1(2000)
[58]M. Saad, A. Kassis, Solar Energy Materials & Solar Cells, 95, 1927 (2011).
[59]Campos CEM, de Lima JC, Grandi TA, Machado KD, and Pizani PS, Solid State Commun. 126, 611 (2003).
[60]NB. Singh, DR. Suhre, W. Rosch, R. Meyer, M. Marable, NC. Fernelius, FK. Hopkins, DE. Zelmon, and R .Narayanan , J. Cryst. Growth. 198, 588 (1999).
[61]NB. Singh, DR. Suhre, V. Balakrishna, M. Marable, R. Meyer, NC. Fernelius, FK. Hopkins, and D. Zelmon, Prog. Cryst. Growth. 37, 47 (1998).
[62]D. J. Late , B. Liu , J. Luo , A. Yan , H. S. S. Ramakrishna Matte , Matthew Grayson , C. N. R. Rao, and Vinayak P. Dravid , Adv. Mater. 24, 3549 (2012).
[63]C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, Optics Express. 14, 10636 (2006).
[64]W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Optics Letters. 27, 16 (2002).
[65]J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, Applied Physics Letters. 103, 081104 (2013).
[66]P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, ACSNANO. 6, 5988 (2012).
[67]S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Nano Lett. 13, 2777 (2013).
[68]Y. Zhou, Y Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Zhongfan Liu, and Hailin Peng, ACSNANO, 8,1485( 2014).
[69]C. C. Chang, J. X. Zeng, S. M. Lan, W. Y. Uen, S. M. Liao, T. N. Yang, W. Y. Ma, and K. J. Chang, Thin Solid Films. 542, 119 (2013).
[70]K. R. Allakhverdiev, M. Ö. Yetis, S. Özbek, T. K. Baykara, and E. Yu. Salaev, Laser Physics, 19, 1092 (2009).
[71]S. H. Lee, Y. K. Hsu, H. C. Hsu, C. S. Chang, and W. F. Hsieh, Jpn. J. Appl. Phys. 42, 5217 (2003).
[72]N. Kojima, K. Sato , M. Budiman, A. Yamada, M. Konagai, K.Takahashi, Y. Nakamura, and O. Nittono, Journal of Crystal Growth. 150, 1175 (1995).
[73]C. Scott, D. Zurong, A. O. Marjorie, and S. O. Fumio, Journal of Vacuum Science & Technology. 16, 2376 (1998).
[74]A. Koëbel, Y. Zheng, J.F. Pétroff, M. Eddrief, Le Thanh Vinh, and C. Sébenne, Journal of Crystal Growth.154 , 269 (1995).
[75]K. Ueno, H. Abe, K. Saiki, and A. Koma, Jpn. J. Appl. Phys. 30, 1352 (1991).
[76]J. P. Voitchovsky, A. Mercier: Acta Crystallogr. B, 31, 2841 (1975).
[77]H. Hahn, W. Klinger and Z. Anorg. Chem. 259 (1949).
[78]T. T. Tsai, Growth and Physical properties of GaSe thin films by molecular beam epitaxy, Tatung University, (2010).
[79]J. E. Jaffe and Alex Zunger, Phys. Rev. B, 28, 5822 (1983).
[80]T. Satoh, Y. Hashimoto, S. Shimakawa, S. Hayashi and T. Negami, Proceedings ofrhe 28th Photovoltaic Specialists Conference, p.567 (IEEE, Anchorage, 2000).
[81]T. Satoh, Y. Hashimoto, S. Shimakawa, S. Hayashi and T. Negami, Sol. Energy Mater: Sol. Cells, 75, 65 (2003).
[82]T. Satoh, Y. Hashimoto, S. Shimakawa and T. Negami, Polycrystalline Semiconductors VII, 127 (2003).
[83]C. Rincon and F. J. Ramirez, J. Appl. Phys. 72, 43211 (1992).
[84]A. Bauknecht, S. Siebentritt, J. Albert, and M. Ch. Lux-Steiner, J. Appl. Phys. 89, 4391 (2001)
[85]Kenji Yoshino, Mutsumi Sugiyama, Daisuke Maruoka, Shigefusa F. Chichibu, Hironori Komaki, Kenta Umeda, Tetsuo Ikari ,Physica B. 302 ,357 (2001).
[86]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science. 306, 666 (2004).
[87]Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, and H. Peng, ACSNANO. 8, 1485 (2014).
[88]Campos CEM, de Lima JC, Grandi TA, Machado KD, and Pizani PS, Solid State Commun. 126, 611 (2003).
[89]NB. Singh, DR. Suhre, W. Rosch, R. Meyer, M. Marable, NC. Fernelius, FK. Hopkins, DE. Zelmon, and R .Narayanan , J. Cryst. Growth. 198, 588 (1999).
[90]NB. Singh, DR. Suhre, V. Balakrishna, M. Marable, R. Meyer, NC. Fernelius, FK. Hopkins, and D. Zelmon, Prog. Cryst. Growth. 37, 47 (1998).
[91]D. J. Late , B. Liu , J. Luo , A. Yan , H. S. S. Ramakrishna Matte , Matthew Grayson , C. N. R. Rao, and Vinayak P. Dravid , Adv. Mater. 24, 3549 (2012).
[92]C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, Optics Express. 14, 10636 (2006).
[93]W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Optics Letters. 27, 16 (2002).
[94]J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, Applied Physics Letters. 103, 081104 (2013).
[95]P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, ACSNANO. 6, 5988 (2012).
[96]S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, Nano Lett. 13, 2777 (2013).
[97]Y. Zhou, Y Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Zhongfan Liu, and Hailin Peng, ACSNANO, 8,1485( 2014).
[98]C. C. Chang, J. X. Zeng, S. M. Lan, W. Y. Uen, S. M. Liao, T. N. Yang, W. Y. Ma, and K. J. Chang, Thin Solid Films. 542, 119 (2013).
[99]K. R. Allakhverdiev, M. Ö. Yetis, S. Özbek, T. K. Baykara, and E. Yu. Salaev, Laser Physics, 19, 1092 (2009).
[100]S. H. Lee, Y. K. Hsu, H. C. Hsu, C. S. Chang, and W. F. Hsieh, Jpn. J. Appl. Phys. 42, 5217 (2003).
[101]N. Kojima, K. Sato , M. Budiman, A. Yamada, M. Konagai, K.Takahashi, Y. Nakamura, and O. Nittono, Journal of Crystal Growth. 150, 1175 (1995).
[102]C. Scott, D. Zurong, A. O. Marjorie, and S. O. Fumio, Journal of Vacuum Science & Technology. 16, 2376 (1998).
[103]Koëbel, Y. Zheng, J.F. Pétroff, M. Eddrief, Le Thanh Vinh, and C. Sébenne, Journal of Crystal Growth.154 , 269 (1995).
[104]K. Ueno, H. Abe, K. Saiki, and A. Koma, Jpn. J. Appl. Phys. 30, 1352 (1991).
[105]S. H. Lee, Y. K. Hsu, H. C. Hsu, C. S. Chang, and W. F. Hsieh, Jpn. J. Appl. Phys. 42, 8 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文