跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪晨幃
研究生(外文):CHEN-WEI HONG
論文名稱:利用掃描式光電子能譜顯微術探討銅銦鎵硒硫太陽能電池元素的縱深分布與能帶結構對於效率之影響
論文名稱(外文):The effects of depth profiling and band Structure of CIGSSe solar cell elements to efficiency by using Scanning Photoelectron Microscopy
指導教授:楊祝壽
指導教授(外文):CHU-SHOU YANG
口試委員:楊祝壽
口試委員(外文):CHU-SHOU YANG
口試日期:2015-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:描式光電子能譜顯微術價電帶能帶結構銅銦鎵硒硫太陽能電池
外文關鍵詞:scanning photoelectron microscopyValence bandband structureCIGS solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究致力於探討銅銦鎵硒硫薄膜太陽能電池元件樣品之成分分佈與能帶結構分析。為了可以觀測到樣品裡各元素濃度的縱深變化與能帶結構,將樣品的薄膜層研磨為一斜面,利用掃描式光電子能譜顯微術(scanning photoelectron microscopy, SPEM)來研究銅銦鎵硒硫薄膜太陽能電池深度相關的元素組成及能帶結構。由於SPEM這項技術在光電子能譜中擁有約200奈米的空間能譜解析能力,使我們可以「直接觀察」太陽能電池組成元素在整個元件中的濃度分佈以及其能帶結構變化。實驗的結果顯示出緩衝層與吸收層介面的能帶結構為spike的形式。我們亦發現在緩衝層和吸收層之介面具有較高的Ga/In+Ga和S/S+Se濃度比,導致了在緩衝層與吸收層的界面處有較大的能隙與較大的導帶最小值。另外,比較另一個效率不同的樣品,發現在緩衝層與吸收層之介面上的導電帶位移由0.46 eV提高到0.86 eV,因此導致效率的差異。
In this study, we investigated the depth-dependent compositions and band structure of Cu(In,Ga)(Se,S)2-based solar cell device. In order to measure the elemental composition distribution and the band structure of the multi-layered films, we polished the CIGSSe-based solar cell with a gradient thickness to probe the position (depth)-dependent variations in photoelectron signals by using scanning photoelectron microscopy (SPEM). SPEM enables us to directly “observe” the depth-dependent compositions and band structure of the thickness-gradient CIGSSe-based solar cell due to its high spatial resolution (~200 nm) in photoelectron emission. Our experimental results show that the band structure is a spike type at the interface of CdS/CIGSSe. It is also found that the concentration ratios of Ga/In+Ga and S/S+Se are higher at the interface of CdS/CIGSSe, leading to a larger band gap and a higher conduction-band minimum near the top of absorber layer. In addition, we compared the material characteristics with the other sample of lower efficiency. The reason of lower efficiency can be attributed to the conduction band offset at its interface of CdS/CIGSSe, which is larger than the sample in this study.
第一章緒論 8
1-1前言 11
1-2 太陽能電池種類 12
1-2-1矽太陽能電池 12
1-2-2化合物太陽能電池 13
1-2-3有機太陽能電池 14
1-3太陽能電池的基本原理 16
第二章銅銦鎵硒硫太陽能電池背景與研究動機 18
2-1 CIGS太陽能電池的構造 18
2-1-1基板 18
2-1-2背電極 19
2-1-3吸收層 20
2-1-4緩衝層 25
2-1-5透明導電層 26
2-2 CIGS太陽能電池的能帶結構 27
2-3 CIGS太陽能電池的元素分布 31
2-4 研究動機 33
第三章儀器設備與實驗原理 34
3-1同步加速器光源設施與簡介 34
3-2 光電子能譜 37
3-3掃描式光電子能譜顯微儀(SPEM) 39
第四章實驗樣品與測量 42
4-1樣品製備 42
4-2掃描式光電子能譜顯微儀測量 44
4-3 CIGS吸收層能隙理論值與實際值之差異性 45
第五章結果與討論 47
5-1 CIGS太陽能電池組成元素的縱深分布 47
5-2 CIGS太陽能電池組成元素濃度的量化 49
5-3 CIGS太陽能電池的能隙 55
5-3-1透明導電層 55
5-3-2緩衝層 56
5-3-3吸收層 56
5-4 CIGS太陽能電池能帶結構 58
5-4-1透明導電層 58
5-4-2緩衝層 59
5-4-3吸收層 60
5-5 CIGS太陽能電池差異比較 62
5-5-1 樣品乙的元素縱深分布與能帶結構 62
5-5-2 元素縱深分布 64
5-5-3 能帶結構 66
5-5-4 效率差異原因分析 68
5-6 結論 70
第六章參考文獻 72
[1] 翁敏航,<Solar cell-太陽能電池>,台灣東華書局股份有限
公司,2010.
[2] 李雯雯,<薄膜太陽能電池發展趨勢分析>,工業材料雜誌,
255期,2008.
[3] R.H.Bube,Photovoltaic Materials,Imperial Colledge press,
1998.
[4] Y.Hamakawa,Thin Film Solar Cell:Next Generation Photovoltacis and Its Applications,Springer(2004).
[5]A.K.Ghosh,T.Feng, ”Merocyanine organic solar cell”,
J.Appl.Phys,49,5982(1978).
[6] L.J.A.Koster,V.D.Mihailetchi,P.W.M.Blom, »”Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells”,Appl,Phys.Lett.,88,093511-1-093511-3(2006).
[7] M. C. Joliet1, C. Antoniadis1, R. Andrew1 and L. D. Laude1, “Laser‐induced synthesis of thin CuInSe2 films,” Appl. Phys. Lett. 46, 266 (1985).
[8] Brown B J,“Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells,” Stanford University, (1989).
[9] W. N. Shafarman and J. Zhu,“Effect of substrate temperature and deposition profile on evaporated Cu(In,Ga)Se2 films and devices,”Thin Solid Films, 361, 473-477 (2000).
[10] T.Godecke, T.Haalboom and F.Ernst, “Phase Equilibria of Cu-In-Se,” Z. Metalkd. 91, no.8, 622-634 (2000).
[11] M.L. Fearheiley, “The phase relations in the Cu,In,Se system and the growth of CuInSe2 single crystals,” Solar Cells, vol 16, 91-100, (1986).
[12] F. O. Adurodija, S. K. Kim, S. D. Kim, J. S. Song, K. H. Yoon, and B. T. Ahn, “Characterization of co-sputtered Cu-In alloy precursors for CuInSe2 thin films fabrication by close-spaced selenization”, Solar Energy Materials and Solar Cells, 55, 225–236, (1998).
[13] A. Niemegeers, M. Burgelman, R. Herberholz, U. Rau, D. Hariskos, and H. W. Schock, “Model for electronic transport in Cu(In,Ga)Se2 solar cells”, Prog. Photovolt. Res. Appl., 6, 407–421, (1998).
[14] T. Dullweber, G. Hanna, U. Rau, and H.W. Schock, “A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors”, Solar Energy Materials & Solar Cells 67, 145-150, (2001).
[15] Takashi Minemoto, Yasuhiro Hashimoto, Takuya Satoh, Takayuki Negami, Hideyuki Takakura, and Yoshihiro Hamakawa, “Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers”, Journal of Applied Physics 89, 8327, (2001).
[16] Chang-Soo Lee, Liudmila Larina, Young-Min Shin, Essam A. Al-Ammar and Byung Tae Ahn, “Design of energy band alignment at the Zn1−xMgxO/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells”, Phys. Chem. Chem. Phys., 14, 4789–4795, (2012).
[17] S.H. Wei and A. Zunger, “Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys”, J. Appl. Phys., 78, 3846, (1995).
[18] Adolf Goetzberger, Christopher Hebling, and H.W. Schock,
“Photovoltaic materials, history, status and outlook”, Materials Science & Engineering:R-Reports, 40(1), p.1-46, (2003).
[19] T. Wada, N. Kohara, S. Nishiwaki, T. Negami , “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films 387, 118-122, (2001).
[20] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H.W. Schock, “The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates”, Thin Solid Films 517, 2187–2190, (2009).
[21] D. Rudmann, G. Bilger, M. Kaelin, F.-J. Haug, H. Zogg, A.N. Tiwari, “Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se2 thin films”, Thin Solid Films 431 – 432, 37–40, (2003).
[22] M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, “Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films”, J. Appl. Phys. 82, 2896 (1997).
[23]國家同步輻射研究中心,http://www.nsrrc.org.tw/
[24] 陳家浩,<從光電效應到光電子顯微術>,物理雙月刊,2005 年10 月
[25]. Bär, W. Bohne, J. Röhrich, E. Strub, S. Lindner, M. C. Lux-Steiner, Ch.-H. Fischer, T. P. Niesen, and F. Karg, “Determination of the band gap depth profile of the penternary Cu(In1-xGaX) (SYSe1-Y)2 chalcopyrite from its composition gradient”, Journal of Applied Physics 96, 3857 (2004).
[26]S. A. Schumacher, J. R. Botha, and V. Alberts, “Photoluminescence study of potential fluctuations in thin layers of Cu (In0.75Ga0.25) (SySe1-y)2”, Journal of Applied Physics 99, 063508 (2006).
[27]M. Bär, S. Nishiwaki, L. Weinhardt, S. Pookpanratana, O. Fuchs et al, “Depth-resolved band gap in Cu(In,Ga)(S,Se)2 thin films”. Appl. Phys. Lett. 93, 244103 (2008).
[28]Takashi Minemoto, Yasuhiro Hashimoto, Takuya Satoh, Takayuki Negami, Hideyuki Takakura, and Yoshihiro Hamakawa, “Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers”, Journal of Applied Physics 89, 8327, (2001).
[29]Chang-Soo Lee, Liudmila Larina, Young-Min Shin, Essam A. Al-Ammar and Byung Tae Ahn, “Design of energy band alignment at the Zn1−xMgxO/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells”, Phys. Chem. Chem. Phys., 14, 4789–4795, (2012).
[30] T. Dullweber, G. Hanna, U. Rau, and H.W. Schock, “A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors”, Solar Energy Materials & Solar Cells 67, 145-150, (2001).
[31]T. Wada, N. Kohara, S. Nishiwaki, T. Negami , “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films 387, 118-122, (2001).
[32] M. Gloeckler*, J.R. Sites, “Efficiency limitations for wide-band-gap chalcopyrite solar cells”,Thin Solid Films 480–481 (2005) 241– 245.
[33] Takashi Minemoto, Takuya Matsui, Hideyuki Takakura,
Yoshihiro Hamakawa, Takayuki Negami,Yasuhiro Hashimoto, Takeshi Uenoyama,Masatoshi Kitagawa“Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation”,Solar Energy Materials & Solar Cells 67 (2001) 83-88.
[34] Takashi Minemoto, Yasuhiro Hashimoto, Takuya Satoh, Takayuki Negami, Hideyuki Takakura, and Yoshihiro Hamakawa, “Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/ Cu(In,Ga)Se2 layers”,Journal of Applied Physics 89, 8327 (2001)。
[35] Takayuki NEGAMI, Takashi MINEMOTO*, Yasuhiro HASHIMOTO, Takuya SATOH, “ClGS SOLAR CELLS USING A NOVEL WINDOW Zn1-xMgxO FILM”,IEEE ,0-7803-5772-8 (2000)。
[36] 賴哲賢, ”Studies of depth-dependent compositions and band structure in Cu(In,Ga)(Se,S)2-based solar cell device”, 清華大學 碩士論文 (2014).
[37] http://www.slideshare.net/wisepartner/110818-agilent
[38] http://lain.atm.ncu.edu.tw/lain_1/POGA/
[39] http://jrchiang.blogspot.tw/2013/01/blog-post_91.html
[40] http://www.auo.com/?sn=192&lang=en-US
[41]http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/basics/b2_1_6.html
[42]https://wiki.utep.edu/pages/viewpage.action?pageId=51217584
[43] Pudov, Alexei O, AA.2005.”Impact of secondary barriers on copper-indium-gallium-selenide solar-cell operation”. (Ph.D. Dissertations). Colorado State University. Department of Physics.
[44] M. T. Nichols, W. Li , D. Pei , G. A. Antonelli, Q. Lin, S. Banna, Y. Nishi, and J. L. Shohet” Measurement of bandgap energies in low-k organosilicates”, J. Appl. Phys. 115, 094105 (2014)。
[45] F. G. Bell and L. Ley” Photoemission study of SiO2(0≦x≦2) alloys”, The American Physical Society,1988。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top