(3.235.11.178) 您好!臺灣時間:2021/03/05 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林靖昀
研究生(外文):Jing-Yun Lin
論文名稱:HER-2抗體接枝磁性介孔氫氧基磷灰石奈米晶體用於乳癌標靶及化熱療之研究
論文名稱(外文):HER-2 Antibody-Conjugated Magnetic Mesoporous Hydroxyapatite Nanocrystal for Breast Cancer Targeting and Chemohyperthermia
指導教授:吳錫芩
指導教授(外文):Hsi-Chin Wu
口試委員:吳錫芩
口試委員(外文):Hsi-Chin Wu
口試日期:2014-12-22
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:HER-2抗體氫氧基磷灰石介孔
外文關鍵詞:HER-2 antibodyHydroxyapatiteMesoporous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
於本篇研究中,透過化學共沉澱法成功的合成出具有介孔結構的磁性氫氧基磷灰石奈米顆粒(Mesoporous magnetic hydroxyapatite, MPmHAp)。因MPmHAp具超順磁性且含獨特的介孔結構,如高的表面積(54 m2/g),於藥物釋放實驗中證明此搭載抗癌藥物Doxorubicin的HER2-MPmHAp能有效的控制並延長藥物釋放速率(130 hr),說明此HER2-MPmHAp能搭載更大量的藥物分子及具有緩慢釋放的特性,適合作為藥物載體之模型。進一步將合成的MPmHAp表面接枝HER-2抗體(HER2-MPmHAp)來達到標靶乳癌細胞的目的。過度表現HER-2受體的腫瘤細胞透過受體介導的內吞作用(receptor mediated endocytosis)具大量的奈米顆粒含量(341.1 pg/cell)。最後,透過搭載抗癌藥物及藉由外加磁場的作用下,針對腫瘤細胞達到熱化療的雙重療效。
In this study, the result demonstrated that iron doped hydroxyapatite nanocrystal with mesoporous structure was successfully prepared through one step route. mesoporous materials have gained enhanced interest with particular attention as drug storage and release hosts due to their higher surface area(54 m2/g) and unique textural properties. This material exhibits rod-like, crystalline structure, which is suitable for drug (Doxorubicin) release as drug carrier and prolong the release time(130 hr).Due to some tumor may overexpressing HER-2 genes, so it can immobilization HER-2 antibody onto MPmHAp surface to active targeting tumor cell and through receptor-mediated endocytosis, it can enhance cell uptake of HER2-MPmHAp(341.1 pg/cell). Finally, it can using chemohyperthermia that hyperthermia improves the antitumor effect of some chemotherapeutic agents.
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 乳癌 3
1.3 腫瘤之臨床治療 5
1.3.1 手術 5
1.3.2 化學療法 6
1.3.3 放射療法 7
1.3.4 熱治療 8
1.4 乳癌治療方法 10
1.5 研究目的 11
第二章 文獻回顧 13
2.1 超順磁奈米顆粒於癌症治療的應用 13
2.1.1 磁性產熱的機制 14
2.1.2 磁性氫氧機磷灰石(mHAp) 16
2.2 磁性奈米晶體的表面修飾 18
2.2.1 聚乙二醇(PEG) 19
2.3 介孔(mesoporous) 21
第三章 實驗與方法 23
3.1 實驗流程圖 23
3.2 實驗步驟與方法 25
3.2.1製備介孔磁性氫氧基磷灰石( MPmHAp) 25
3.2.2介孔磁性氫氧基磷灰石之表面改質( APTES-MPmHAp) 26
3.2.3接枝HER-2抗體( HER2-MPmHAp) 27
3.3 材料分析 28
3.3.1 X光繞射分析(X-Ray Diffractometer, XRD) 28
3.3.2 感應耦合電漿光學放射光譜(Inductively Coupled Plasma, ICP) 29
3.3.3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 30
3.3.4 震動樣品磁力計(Vibrating Sample Magnetometer, VSM) 31
3.3.5 高周波電感應加熱器(High Frequency-Induction Heating machine, HFIHM) 32
3.3.6 BET比表面積測試(Brunauer-Emmett-Teller, BET) 33
3.3.7 體外(in vitro)藥物裝載及釋放 34
3.4 細胞培養及生物相容性測試 35
3.4.1 細胞培養及計數 36
3.4.2 LDH細胞毒性測試 38
3.4.3 細胞攝取定量分析 40
第四章 結果與討論 41
4.1 介孔磁性氫氧基磷灰石之物化性分析 41
4.1.1 X光繞射分析 41
4.1.2穿透式電子顯微鏡 43
4.1.3 比表面積測試 46
4.1.4 元素分析 48
4.1.5 震動樣品磁力計 50
4.1.6高周波電感應加熱器 52
4.1.7藥物裝載及釋放 53
4.2 體外(in vitro)細胞分析 55
4.2.1細胞毒性 55
4.2.2細胞攝取之定量分析 57
4.2.3 細胞攝取之毒性測試 60
第五章 結論 62

圖目錄
圖 1- 1 抗體的基本構造 4
圖 1- 2 實驗設計圖 12

圖 2- 1 Neel自旋及布朗運動 15
圖 2- 2 超順磁材料與外加磁場關係 15
圖 2- 3 氫氧基磷灰石的分子結構圖 17
圖 2- 4聚乙二醇之化學結構式 20
圖 2- 5介孔(mesoporous)示意圖 22

圖 3- 1 LDH反應過程 38

圖 4- 1 不同鐵濃度含量的MPmHAp之XRD分析 42
圖 4- 2 不同PEG濃度的MPmHAp之XRD分析 42
圖 4- 3 MPmHAp 21之TEM影像,箭頭處為氧化鐵 44
圖 4- 4 MPmHAp之HR-TEM影像 44
圖 4- 5 MPmHAp之電子擇區繞射圖 45
圖 4- 6 (a) MPmHAp 21及(b) MPmHAp 24之BET曲線圖及BJH之分佈圖 47
圖 4-7 合成的MPmHAp在不同鐵濃度下之鈣(●)及鐵(□)含量 49
圖 4- 8 (a) MPmHAp 23及(b) MPmHAp 24於30kOe下之VSM分析 50
圖 4- 9 (a) MPmHAp 24及(b) MPmHAp 34於30kOe下之VSM分析 51
圖 4- 10外加交變磁場作用下,0.5 mg/ml的(a) MPmHAp24及(b) MPmHAp 34於水中之溫度變化量 52
圖 4-11 DOX-HER2-MPmHAp 24於pH7.4之藥物釋放曲線圖 54
圖 4- 12 3T3細胞與不同濃度的MPmHAp 4共培養24hr及72hr之細胞毒性分析 56
圖 4- 13 低表現HER-2受體的乳腺癌細胞MCF-7及過度表現HER-2受體的乳腺癌細胞SK-BR-3與HER2-MPmHAp共培養至12小時之定量分析 59
圖 4- 14 搭載抗癌藥物Doxorubicin之HER2-MPmHAp奈米顆粒藉由外加磁場作用下之細胞毒性測試 61

表目錄
表 1 合成MPmHAp所含不同莫耳量的聚乙二醇(PEG)及氧化鐵(Iron oxide)對照表 24
表 2 MPmHAp質地結構之特性分析(SBET:Surface area, Vp:Pore volume, Dp:Pore size) 47
表 3添加不同鐵源前驅物MPmHAp之成分元素分析(*理論值) 48
[1]S. P. Guo, S. G. Wu, J. Zhou, H. X. Feng, F. Y. Li, Y. J. Wu, J. Y. Sun, Z. Y. He, Drug design, development and therapy 2014, 8, 497-503.
[2]C. Qian, M. Li, J. Sui, T. Ren, Z. Li, L. Zhang, L. Zhou, Y. Cheng, D. Wang, Drug design, development and therapy 2014, 8, 485-496.
[3]T. Lei, S. Srinivasan, Y. Tang, R. Manchanda, A. Nagesetti, A. Fernandez-Fernandez, A. J. McGoron, Nanomedicine : nanotechnology, biology, and medicine 2011, 7, 324-332.
[4]S. Maya, L. G. Kumar, B. Sarmento, N. Sanoj Rejinold, D. Menon, S. V. Nair, R. Jayakumar, Carbohydrate polymers 2013, 93, 661-669.
[5]S. Ithimakin, K. C. Day, F. Malik, Q. Zen, S. J. Dawsey, T. F. Bersano-Begey, A. A. Quraishi, K. W. Ignatoski, S. Daignault, A. Davis, C. L. Hall, N. Palanisamy, A. N. Heath, N. Tawakkol, T. K. Luther, S. G. Clouthier, W. A. Chadwick, M. L. Day, C. G. Kleer, D. G. Thomas, D. F. Hayes, H. Korkaya, M. S. Wicha, Cancer research 2013, 73, 1635-1646.
[6]T. J. Kruser, D. L. Wheeler, Experimental cell research 2010, 316, 1083-1100.
[7]A. S. Manjappa, K. R. Chaudhari, M. P. Venkataraju, P. Dantuluri, B. Nanda, C. Sidda, K. K. Sawant, R. S. Murthy, Journal of controlled release : official journal of the Controlled Release Society 2011, 150, 2-22; .
[8]H. Khouni, S. Ghozzi, K. Ramzi, C. H. Smaali, H. Majed, N. Ben Rais, La b
[9]Z. H. Wang, J. Guo, Z. Chen, C. Z. Li, L. J. Sheng, D. G. Zhou, B. Liu, J. Liu, Q. C. Wang, E. N. Zhang, Zhonghua zhong liu za zhi [Chinese journal of oncology] 2008, 30, 389-391.
[10]J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, H. M. Smilowitz, The Journal of pharmacy and pharmacology 2008, 60, 977-985.
[11]J. S. Lee, H. L. Rodriguez-Luccioni, J. Mendez, A. K. Sood, G. Lpez-Berestein, C. Rinaldi, M. Torres-Lugo, Journal of nanoscience and nanotechnology 2011, 11, 4153-4157.
[12]A. Shokuhfar, S. S. Seyyed Afghahi, Nanoscale research letters 2013, 8, 540.
[13]L. Zhao, M. Huo, J. Liu, Z. Yao, D. Li, Z. Zhao, J. Tang, Journal of nanoscience and nanotechnology 2013, 13, 741-745.
[14]F. J. Lewis, Minnesota medicine 1953, 36, 763-766.
[15]S. Libson, M. Lippman, Int Rev Psychiatr 2014, 26, 4-15.
[16]H. B. Li, F. Ke, Y. L. An, X. X. Hou, H. Zhang, M. Lin, D. S. Zhang, J Nanopart Res 2013, 15.
[17]M. Latorre, C. Rinaldi, Puerto Rico health sciences journal 2009, 28, 227-238; J. Riegler, A. Liew, S. O. Hynes, D. Ortega, T. O'Brien, R. M. Day, T. Richards, F. Sharif, Q. A. Pankhurst, M. F. Lythgoe, Biomaterials 2013, 34, 1987-1994.
[18]M. Longmire, P. L. Choyke, H. Kobayashi, Nanomedicine (Lond) 2008, 3, 703-717.
[19]M. D. Chavanpatil, A. Khdair, J. Panyam, Journal of nanoscience and nanotechnology 2006, 6, 2651-2663.
[20]P. Decuzzi, M. Ferrari, Biomaterials 2006, 27, 5307-5314.
[21]X. Fan, G. Jiao, W. Zhao, P. Jin, X. Li, Nanoscale 2013, 5, 1143-1152.
[22]H. Shao, C. Min, D. Issadore, M. Liong, T. J. Yoon, R. Weissleder, H. Lee, Theranostics 2012, 2, 55-65.
[23]S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J Mater Chem 2004, 14, 2161-2175.
[24]J. S. Weinstein, C. G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W. D. Rooney, L. L. Muldoon, E. A. Neuwelt, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2010, 30, 15-35.
[25]M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Advanced drug delivery reviews 2011, 63, 24-46.
[26]Y. J. Guo, Y. Y. Wang, T. Chen, Y. T. Wei, L. F. Chu, Y. P. Guo, Materials science & engineering. C, Materials for biological applications 2013, 33, 3166-3172.
[27]Y. Mizushima, T. Ikoma, J. Tanaka, K. Hoshi, T. Ishihara, Y. Ogawa, A. Ueno, Journal of controlled release : official journal of the Controlled Release Society 2006, 110, 260-265.
[28]Y. Li, J. Widodo, S. Lim, C. Ooi, J Mater Sci 2012, 47, 754-763.
[29]D. Gopi, S. Ramya, D. Rajeswari, P. Karthikeyan, L. Kavitha, Colloid Surface A 2014, 451, 172-180.
[30]P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin, Biomaterials 2008, 29, 4341-4347.
[31]O. Veiseh, J. W. Gunn, M. Zhang, Advanced drug delivery reviews 2010, 62, 284-304.
[32]L. X. Tiefenauer, A. Tschirky, G. Kuhne, R. Y. Andres, Magnetic resonance imaging 1996, 14, 391-402; bJ. Shi, X. Yu, L. Wang, Y. Liu, J. Gao, J. Zhang, R. Ma, R. Liu, Z. Zhang, Biomaterials 2013, 34, 9666-9677.
[33]J. M. Harris, R. B. Chess, Nature reviews. Drug discovery 2003, 2, 214-221.
[34]A. Abuchowski, T. van Es, N. C. Palczuk, F. F. Davis, The Journal of biological chemistry 1977, 252, 3578-3581.
[35]B. W. Wilson, K. Caputa, M. A. Stuchly, J. D. Saffer, K. C. Davis, C. E. Washam, L. G. Washam, G. R. Washam, M. A. Wilson, Bioelectromagnetics 1994, 15, 563-577.
[36]E. M. Liu, M. Vezzoli, A. J. Locke, R. L. Frost, W. N. Martens, Journal of colloid and interface science 2014, 436, 194-203.
[37]F. Muhammad, M. Y. Guo, A. F. Wang, J. Y. Zhao, W. X. Qi, Y. J. Guo, G. S. Zhu, Journal of colloid and interface science 2014, 434, 1-8.
[38]N. Z. Knezevic, V. S. Y. Lin, Nanoscale 2013, 5, 1544-1551.
[39]K. L. Lin, L. Chen, P. Y. Liu, Z. Y. Zou, M. L. Zhang, Y. H. Shen, Y. Q. Qiao, X. Y. Liu, J. Chang, Crystengcomm 2013, 15, 2999-3008.
[40]Q. Zhang, F. Liu, K. T. Nguyen, X. Ma, X. J. Wang, B. G. Xing, Y. L. Zhao, Adv Funct Mater 2012, 22, 5144-5156; bO. Tabasi, C. Falamaki, Z. Khalaj, Colloid Surface B 2012, 98, 18-25.
[41]S. Spagnou, A. D. Miller, M. Keller, Biochemistry-Us 2004, 43, 13348-13356.
[42]L. N. Gu, X. M. He, Z. Y. Wu, Mater Chem Phys 2014, 148, 153-158; A. Fereidoon, S. Memarian, A. Albooyeh, S. Tarahomi, Mater Design 2014, 57, 201-210; X. Y. Ye, S. Cai, G. H. Xu, Y. Dou, H. T. Hu, X. J. Ye, Mat Sci Eng C-Mater 2013, 33, 5001-5007.
[43]P. P. Yang, Z. W. Quan, C. X. Li, X. J. Kang, H. Z. Lian, J. Lin, Biomaterials 2008, 29, 4341-4347.
[44]T. Wen, L. N. Brush, K. M. Krishnan, Journal of colloid and interface science 2014, 419, 79-85.
[45]P. E. Stromhaug, T. O. Berg, T. Gjoen, P. O. Seglen, Eur J Cell Biol 1997, 73, 28-39.
[46]N. P. Dantuma, M. A. P. Pijnenburg, J. H. B. Diederen, D. J. VanderHorst, J Lipid Res 1997, 38, 254-265.
[47]H. Y. Yuan, S. L. Zhang, Appl Phys Lett 2010, 96.
[48]S. Y. Chen, X. R. Zhao, J. Y. Chen, J. Chen, L. Kuznetsova, S. S. Wong, I. Ojima, Bioconjugate Chem 2010, 21, 979-987.
[49]E. Q. Song, Z. L. Zhang, Q. Y. Luo, W. Lu, Y. B. Shi, D. W. Pang, Clin Chem 2009, 55, 955-963.
[50]W. P. Liao, J. DeHaven, J. Shao, J. X. Chen, Y. Rojanasakul, D. L. Lamm, J. K. H. Ma, Drug Deliv 1998, 5, 111-118.
[51]A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix, J Magn Magn Mater 1999, 194, 185-196.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔