跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃任遠
研究生(外文):Ren-Yuan Hung
論文名稱:鋁箔的微弧氧化膜之熱分析及殘留應力分析之研究
論文名稱(外文):Thermal analysis and residual stress determination of micro-arc oxidation coating on aluminum foil
指導教授:楊木榮楊木榮引用關係
指導教授(外文):Mu-Rong Yang
口試委員:楊木榮
口試委員(外文):Mu-Rong Yang
口試日期:2015-06-08
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:熱分析殘留應力微弧氧化
外文關鍵詞:Residual stressMicro Arc OxidationThermal Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微弧氧化近年來被應用在相當多領域,包含航太、軍事、生醫、汽機車工業、民生工業等,並且鋁及鋁合金被應用的更廣,可以取代傳統的陽極處理及電鍍處理,由於有更好的表面性質(硬度、耐腐蝕性…)以及友善的無機鹽類電解液,在製程時產生高溫電漿態的金屬再碰到溫差極大的電解液,會使得產生氧化燒結的作用,也因為高溫迅速降至低溫,會產生熱應力及非晶質的產生,本研究用鋁箔當基材,並比較常用的鋁酸及矽酸兩種系列的電解液,利用冶具控制膜層在單面生長,以1.5M的NaOH將鋁基材去除取得微弧氧化膜層,以微弧氧化膜層彎曲的曲率半徑,計算膜層內應力:矽酸系約為20 ~ 40MPa、鋁酸系約為60 ~ 200 MPa。XRD結果顯示矽酸系列有非晶質結構及γ氧化鋁以及mullite。經過800℃及1200℃分別處理4小時後進行XRD檢測,發現結晶度有上升,並與DTA及TMA檢測對照,發現非晶質再約700℃相變化成γ氧化鋁,此溫度是此非晶質的玻璃轉移溫度,γ氧化鋁在970℃會相變化成α氧化鋁。用不同DTA升溫速率去計算出相變化的活化能為293kJ/mole。以TMA測膜層的膨脹係數為6.59x10-6m/K, 鋁酸系的膜層中含有大量α氧化鋁及少量非晶質,XRD與TMA檢測發現非晶質在約920℃會轉換成α氧化鋁,此溫度是此非晶質的玻璃轉移溫度,利用TMA測膜層的膨脹係數為8.2×10-6 /K。
Micro-arc oxidation (MAO) has been extensively applied in many fields such as aerospace, military industry, etc. MAO coatings outperform other traditional surface treatments (such as anodic treatment and electroplating) in terms of corrosion resistance and wear resistance. MAO is a more environmentally friendly process. During MAO, extremely high temperature of micro arc will lead to oxidation and sintering reaction and quenching on the anodic surface. Therefore, thermal stress and unique microstructure will be formed during MAO process. In the study, MAO coating was deposited on one side of aluminum foil used as substrate fixed in home-made holder. There are two kind most common electrolytic solutions, silicate and aluminate, accessed in this work. After MAO coating, the residual aluminum metal substrate will be stripped by aqueous NaOH(1.5M) solution. The detached MAO coating can be obtained. The internal stress of the detached silicate–containing MAO coating is around 20~40MPa and the attached aluminate-containing MAO coating is around 60~200MPa, determined from the radius of curvature of the detached MAO coatings. From the powder XRD of silicate-containing MAO coatings,γ-Al2O3, mullite and amorphous structure are found. The crystallinity of MAO coating will increase after annealing at 800℃ and 1200℃ treatment. DTA and TMA indicate that amorphous MAO will transform intoγ-Al2O3 aroundglass transition temperature, say 700℃. Subsequently, γ-Al2O3 will be further transformed toα-Al2O3 at 970℃. The activation energy of the transformation ,293kJ/mole, determined from DTA spectra using different heating rate. From TMA analysis, thermal expansion coefficient of silicate-containing MAO coating is 6.5910-6m/K. Aluminate-containing MAO coating consists ofα-Al2O3 and small amount of amorphous structure. From XRD and TMA analysis, amorphous phases transformed intoα-Al2O3 around 920℃,i.e. glass transition temperature. From TMA analysis, thermal expansion coefficient of aluminate-containing MAO coating is 8.2×10-6 /K.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1緒論 1
1.2研究動機 4
第二章 文獻回顧 5
2.1微弧氧化發展 5
2.2微弧氧化簡介 6
2.2.1微弧放電原理 6
2.2.2微弧氧化處理隨時間變化關係 8
2.2.3膜層隨時間的變化 10
2.2.4結構及表面型態 12
2.2.5微弧氧化層之成分 15
2.2.6微弧氧化膜層之殘留應力 16
第三章 實驗方法 18
3.1材料準備 18
3.2微弧氧化處理 18
3.3取微弧氧化膜層之方法 20
3.4實驗流程: 21
3.5 X-ray繞射分析 21
3.6奈米壓痕分析 22
3.7 Thermal Mechanical Analyzer 22
3.8 Differential thermal analysis 22
3.9電子顯微鏡分析 24
第四章 結果與討論 25
4.1截面與表面型態 25
4.2利用X-ray進行成分分析 29
4.3熱分析 34
4.3.1利用DTA判定反應活化能 34
4.3.2膨脹係數 37
4.3.3相轉換溫度及玻璃轉換溫度 39
4.4膜層應力探討 43
第五章 結論 47
參考文獻 49
[1].Yang, S.G., T. Li, L.S. Huang, T. Tang, J.R. Zhang, B.X. Gu, Y.W. Du, S.Z. Shi and Y.N. Lu, Stability of anodic aluminum oxide membranes with nanopores. Physics Letters A, 2003. 318: p. 440.
[2].Mata-Zamora, M.E. and J.M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study. REVISTA MEXICANA DE FI´SICA, 2005. 51: p. 502.
[3].Omer Ozgur Capraz, P. Shrotriya and K.R. Hebert, Measurement of stress changes during growth and dissolution of anodic oxide films on aluminum. The Electrochemical Society, 2014. 161: p. 256.
[4].Wang, X.-S., X.-W. Guo, X.-D. Li and D.-Y. Ge, Improvement on the Fatigue Performance of 2024-T4 Alloy by Synergistic Coating Technology. Materials, 2014. 7: p. 3533.
[5].Dejiu, S., C. Jingrui, G. Changhong and L. Peiyu, Evolution of Residual Stresses in Micro-arc Oxidation Ceramic Coatings on 6061 Al Alloy. CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2013. 26: p. 1149.
[6].馮克林, 微電弧電漿電化學技術,輕金屬專題. 工業材料雜誌, 2004. 211期: p. 104~109.
[7].Mardov, G.A. and G.V. Markova, The formation method of anodic electrolytic condensation. SU52961, 1976.
[8].Kurze, P.K. and H.G. Schneider, Application fiekls of ANOF layers and composites. Cryst.Res.Technol., 1986. 21: p. 1603.
[9].Morlidge, J.R., P.Skeldon, G.E. Thompson, H.Habazaki, K.Shimizu and G.C. Wood, Gel formation and the efficiency of anodic film growth on aluminium. Electrochim.Acta, 1999. 44: p. 2423.
[10].Guangliang, Y., L.Xianyi, B. Yizhen, C. Haifeng and J. Zengsum, The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Journal of Alloys and Compounds, 2002. 345: p. 196.
[11].Snizhko, L.O., A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland and A. Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochimica Acta, 2004. 49(13): p. 2085.
[12].Koroleva, E.V., G.E. Thompson, G. Hollrigl and M. Bloeck, Surface morphological changes of aluminium alloys in alkaline solution:: effect of second phase material. Corrosion Sci. , 1999. 41: p. 1475.
[13].Krishna, L.R., K.R.C. Somaraju and G. Sundararajan, The Tribological Performance of Ultra-hard Ceramic Composite Coatings obtained through Microarc Oxidation. Surf. Coat. Technol, 2003. 163: p. 484.
[14].Mecuson, F., T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola and G. Henrion, Diagnostics of an electrolytic microarc process for aluminium alloy oxidation. Surface & Coatings Technology, 2005. 200: p. 804.
[15].Xue, W., Z. Deng, Y. Lai and R. Chen, Analysis of Phase Distribution for Ceramic Coatings formed by Microarc Oxidation on Aluminum Alloy. Journal of the American Ceramic Society, 1998. 81(5): p. 1365.
[16].Nie, X., E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin and A. Matthews, Abrasive wearycorrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology, 2002. 149: p. 245.
[17].Rama-Krishna, L., K.R.C. Somaraju and G. Sundararajan, The Tribological Performance of Ultra-hard Ceramic Composite Coatings obtained through Microarc Oxidation. Surf. Coat. Techn., 2003. 163-164: p. 484.
[18].Curran, J.A. and Peterhouse,Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings,2005,University of Cambridge
[19].Yerokhin, A.L., X. Nie, A. Leyland, A. Matthews and S.J. Dowey, Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999. 122(2–3): p. 73.
[20].Guangliang, Y., l. Xianyi, B. Yizhen, C. Haifeng and J. Zengsun, The Effects of Current Density on the Phase Composition and Microstructure Properties of Micro-arc Oxidation Coatings. J Alloys Compounds, 2002. 345: p. 196.
[21].Tian, J., Z. Luo, S. Qi and X. Sun, Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surface and Coatings Technology, 2002. 154(1): p. 1.
[22].Nie, X., A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey and A. Matthews, Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surface and Coatings Technology, 1999. 116: p. 1055.
[23].Gnedenkov, S.V., O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebrukhov, P.S. Gordienko, S. Iwatsubo and A. Matsui, Composition and Adhesion of Protective Coatings on Aluminum. Surf. & Coat. Techn., 2001. 145(1-3): p. 146.
[24].Chang, Y.-M., Residual Stress Measurement by X-ray Diffraction. 1971: Society for Automotive Engineering.
[25].Handbook, A., Surface Engineering. Vol. 5. 1999: ASM International.
[26].Curran, J.A. and T.W. Clyne, Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surf. Coat. Technol, 2005. 199: p. 168.
[27].(Ed.), D.R.A., The Science and Engineering of Materials. Thermal Properties of Materials. 2004.
[28].Yerokhin, A.L., L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington and A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium. J. Phys. D: Appl. Phys., 2003. 36: p. 2110.
[29].Clyne, T.W. and S.C. Gill, Residual Stresses in Thermal Spary Coatings and Their Effect on Interfacial Adhesion A Review of Recent Work. Termal Spary Technology, 1996. 5(4): p. 401.
[30].Kissinger, H.E., Variation of Peak Temperature With Heating Rate In Differential Thermal Analysis. Journal of Research of the National Bureau of Standards, 1956. 57(4): p. 2712.
[31].Pask, J.A. and M.F. vVarner, Differential thermal analysis methods and techniques. Bu!. Am. Ceram. Soc, 1951. 34: p. 221.
[32].程慷果, 万菊林 and 梁开明, 云母微晶玻璃析晶动力学的研究. 硅酸盐学报, 1997. 25(5): p. 567.
[33].Cheng, K., J. Wan and K. Liang, Differential thermal analysis on the crystallization Kinetics of K2O-B2O3-MgO-AlO3-SiO2-TiO2-F glass. J.Am.Ceram.Soc., 1999. 82(5): p. 1212.
[34].Yoldas, B.E., Thermal stabilisation of an active alumina and effect of dopants on the surface area. Journal of Materials Science, 1976. 11: p. 465.
[35].Lafarga, D., A. Lafuente, M. Menéndez and J. Santamaría, Thermal stability of γ-Al2O3/α-Al2O3 msoporous membranes. Journal of Membrane Science, 1998. 147: p. 173.
[36].Keller, F., M.S. Hunter and D.L. Robinson, Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature, 2004. 430: p. 761.
[37].Kollenberg, W. and J. Margalit, Thermal Expansion of AlON and γ-Al2O3. Journal of Materials Science Letters, 1992. 11: p. 991.
[38].Green, D.J., D.R. Clarke, S. Suresh and I.M. Ward,An Introduction to the Mechanical Properties of Ceramics,1998,Cambridge University
[39].Proost, J. and F. Spaepen, Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition. Journal of Applied Physics, 2002. 91(1): p. 204.
[40].施惟凱,Mullite/Zirconia 複合材料之電性分析 2006,國 立 交 通 大 學
[41].Khan, R.H.U., A.L. Yerokhin, T. Pilkington, A. Leyland and A. Matthews, Residual stresses in plasma electrolytic oxidation coatings on Al alloy. Surface & Coatings Technology, 2005. 200: p. 1580.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 23. 范錚強、Couger, J. D.、宋鎧,「資訊人員的工作激勵-中美的差異」,資訊管理,第1卷第1期,民國82年,頁79-87。
2. 22. 林奕銘,「工作倦怠階段理論在組織管理上之應用」,空大行政學報,第7期,民國86年,頁147-158。
3. 51. 陸洛,「工作壓力之歷程:理論與研究的對話」,中華心理衛生學刊,第10卷第4期,民國86年,頁19-51。
4. 20. 林東清,「影響資訊人員工作滿意程度與工作績效的因素分析」,人力資源學報,第3期,民國82年,頁35-51。
5. 58. 張永源、陳秋蓉、邱玫芳、陳婷婷,「勞工工作壓力生理心理反應測定與高工作壓力篩檢」,勞工安全衛生研究季刊,第5卷第3期,民國86年9月,頁53-66。
6. 61. 張曉春,「專業人員工作疲乏研究模式-以社會工作員為例」,思與言,第1卷第21期,民國72年,頁66-79。
7. 64. 黃臺生,「工作倦怠相關理論探述」,中國行政,民國90年,頁37-68。
8. [6]. 馮克林, 微電弧電漿電化學技術,輕金屬專題. 工業材料雜誌, 2004. 211期: p. 104~109.
9. 吳世雄(1998)。認知心理學的記憶原理對漢字教學的啟迪。華文世界,89,46-54。
10. 李文肇(2003)。怎樣的國語才算標準?從語言純淨心理看漢語共同語官定標準與使用者語感的隔閡。淡江人文社會學刊,15,89-116。
11. 周玟慧(2006)。異序詞研究與對外漢語教學。華語文教學研究,12,55-70。
12. 周玟慧(2007)。並列式雙音異序結構管窺。東海中文學報,19,321-344。
13. 蔡美智(2010)。華語近義詞詞義辨識難易度與學習策略初探。臺灣華語教學研究,1,57-79。
 
無相關點閱論文