跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何肇軒
研究生(外文):Chao-Hsuan He
論文名稱:不同起始粉末製備鈦鋁碳三元碳化物之合成研究
論文名稱(外文):Synthesis of Ti-Al-C ternary carbides by using different starting powders
指導教授:吳新明
指導教授(外文):Hsin-Ming Wu
口試委員:吳新明
口試委員(外文):Hsin-Ming Wu
口試日期:2015-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:XRD結構分析Ti3AlC2機械球磨及熱退火顆粒粒徑生成機制
外文關鍵詞:XRD structure analysisTi3AlC2Mechanical milling and thermal annealingparticle sizeformation mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將四種不同的起始粉末(1)Al4C3、Ti、C,(2) Al4C3、Ti,(3) TiC、Ti、Al,(4) Ti、Al、C使用機械球磨及熱退火技術合成MAX相Ti3AlC2粉末。球磨時間設定為4、9、15小時,球磨後之退火溫度設定為1200C。以XRD繞射、SEM觀察、及雷射光散射粒徑分析儀等定性及比較各組起始粉末生成Ti3AlC2的生成機制、形貌特徵和顆粒大小。實驗結果發現第二組以Al4C3、Ti作為起始粉末,經球磨15小時後粉末間並未發生反應,並沒有新的相生成。其餘三組的起始粉末,球磨後有少量的Ti3AlC2相以及大量的TiC粉末生成。從球磨的過程中推論,Ti會C先行生成TiC相,再與Al形成Ti3AlC2相。將球磨後的粉末以1200℃退火持溫2小時,發現球磨後的粉末皆多少轉變生成Ti3AlC2相,其中又以第四組純元素粉末Ti、Al、C球磨9小時輔以熱退火處理所生成的Ti3AlC2粉末含量最多。經熱退火處理後,平均粒徑增加。
Four different sets of starting powders (1) Al4C3, Ti, C, (2) Al4C3, Ti, (3) TiC, Ti, Al, (4) Ti, Al, C were adopted as starting powders to try to synthesize MAX phase Ti3AlC2 powders by mechanical milling and thermal annealing technique in this study. The milling time was set to be 4, 9 and 15 hours, and the annealing temperature was set to be 1200 C. The formation mechanism, morphological features and particle sizes of the processed powders resulting from different sets of starting powders were characterized and compared by X-ray diffraction analysis, scanning electron microscopic observation, and particle size analysis using laser scattering particle size distribution analyzer. Experimental results showed that milling the second set of powders for up to 15 hours did not cause any reaction to occur between the powders and no new phase was formed. For the rest three sets of starting powders, small amount of Ti3AlC2 phase and large number of TiC powder were generated after the milling. It was inferred from the processing of ball milling that Ti will first react with C to form TiC phase, which then reacts with Al to form Ti3AlC2 phase. All these milled powders were annealed at temperature of 1200 C for 2 hours, and the milled powders following this annealing treatment transformed more or less into Ti3AlC2 phase, wherein the fourth set of powders (Ti, Al, C powders) after the 9-hr milling and subsequent annealing treatment generated the most amount of Ti3AlC2 powder. After the thermal annealing treatment, the average particle size increases.
誌謝 I
摘要 II
ABSTRACT III
目次 IV
圖次 VI
表次 IX
一、前言 1
二、文獻回顧 3
2.1 MAX相 3
2.2 Ti3AlC2 7
2.3 機械合金化(mechanical alloying) 9
2.4 自蔓延反應 10
2.5擴散反應 11
2.6 退火 12
三、實驗方法 15
3.1.1 Al4C3、Ti、C合成Ti3AlC2粉末 15
3.1.2 Al4C3、Ti合成Ti3AlC2粉末 16
3.1.3 TiC、Ti、Al合成Ti3AlC2粉末 16
3.1.4 Ti、Al、C合成Ti3AlC2粉末 16
3.2 X光繞射儀 19
3.3 熱處理 20
3.4雷射光散射粒徑分析儀 21
3.5場發射掃描式電子顯微鏡觀察(FE-SEM) 21
3.6能量散佈光譜儀分析(Energy Dispersive Spectrometer,EDS) 22
四、結果與討論 25
4.1 第一組 Al4C3、Ti、C為起始粉末 25
4.1.1 MA 25
4.1.2 退火處理 26
4.1.3 粒徑分析 28
4.2 第二組 Al4C3、Ti為起始粉末 31
4.2.1 MA 31
4.2.2 退火處理 32
4.2.3 粒徑分析 33
4.3第三組 TiC、Ti、Al為起始粉末 37
4.3.1 MA 37
4.3.2 退火處理 38
4.3.3粒徑分析 39
4.3.4 SEM、EDS分析 43
4.4 第四組 Ti、Al、C為起始粉末 44
4.4.1 MA 44
4.4.2 退火處理 45
4.4.3 粒徑分析 46
4.4.4 SEM、EDS分析 50
4.5綜合比較 51
五、結論 56
參考文獻 58
1.M. W. Barosum and T. El-Raghy, American Scientist., 89(2001)334.
2.M.W. Barsoum and M. Radovic, Annual Review of Materials Research., (2011)195.
3.M.W. Barsoum, Wiley., 2013.
4.H. Nowotny, Prog. Solid State Chem., 5(1971)27.
5.M. W. Barosum and T. El-Raghy, J. Am. Ceram. Soc., 79(1996)1953.
6.M. A. Pietzka, and J. C. Schuster, J. Phase Equilib., (1994)392.
7.M. W. Barsoum and Tzenov, N. V.,J. Am. Ceram. Soc., 83(2000)825.
8.Wang X. H. and Zhou, Y. C., Acta Mater., (2002)3141.
9.Wang, X. H. and Zhou, Y. C., J. Mater. Chem., (2002)455.
10.Zhou, A. G., Wang, C. A. and Huang, Y., Materials Science and Engineering. A., (2003)333.
11.Zhu, J. Q., Mei, B. C., Xu, X. W. and Liu, J., Mater. Lett., (2004)588.
12.Ai, M. X., Zhai, H. X. and Zhou, Y. et al., J. Am. Ceram. Soc., 89(2006)1114.
13.Łopacinski, M., Puszynski, J. and Lis, J., J. Am. Ceram. Soc., 84(2001)3051.
14.Ge, Z. B. and Chen, K. X. et al., J. Eur. Ceram. Soc., 23(2003)567.
15.Zhou, A. G., Wang, C. A., Ge, Z. B. and Wu, L. F., J. Mater.Sci.Lett., 20(2001)1971.
16.Zhou, A. G., Wang, C. A. and Huang, Y., J. Mater. Sci., 38(2003)3111.
17.Zhou, Y., Sun, Z. M., Tada, S. J. and Hashimoto, H., Scr. Mater., 55(2006)767.
18.Zhou, W. B., Mei, B. C. and Zhu, J. Q., Ceram. Int., 33(2007)1399.
19.Ying, D.Y. and Zhang, D. L. Materials Science and Engineering.,
(2000)153.
20.Per Eklund , Manfred Beckers , Ulf Jansson and Lars Hultman, Thin Solid Films., 518(2010)1853.
21.Wang, X. H. and Zhou, Y.C., Corros. Sci., 45(2003)891.
22.Wang, X. H. and Zhou, Y.C., J. Mater. Chem., 12(2002)2781.
23.Zhou, W. B., Mei, B.C., Zhou, J.Q. and Hong, X.L., J. Mater. Sci., 40(2005)2099.
24.Zhou, Y.C., Sun, Z.M. Tada, S.J. and H. Hashimoto, Scripta Mater., 55(2006)767.
25.Zhou, Y.C., Sun, Z.M. Tada, S.J. and H. Hashimoto, Scripta Mater., 56(2007)725.
26.Zhou, Y.C., Sun, Z.M. Tada, S.J. and H. Hashimoto, Materials Science and Engineering., (2008)90.
27.Y. Khoptiar, I. Gotman and E.Y. Gutmanas, J. Am. Ceram. Soc., 88(2005)28.
28.C. Yang, S.Z. Jin, B.Y. Liang and S.S. Jia, J. Ceram.. Soc., 29(2009)181.
29.C. Yang, S.Z. Jin, B.Y. Liang, G.J. Liu and S.S. Jia, J. Mater., 209(2009)871.
30.D.G. Ivey, D.O. Northwood and Z Phys, Chem, 147(1986)191.
31.L. Schlapbach and A. Züttel, Nature., 414(2001)353.
32.M. Heilmaier, H. Saage and J. Eckert, Materials Science and Engineering., (1997)653.
33.Ying, D.Y. and Zhang, D.L., Materials Science and Engineering., (2000)154.
34.Liu,B.H., Li,Z.P.,R. Kitani and S. Suda, J. Alloys Compd., 825(2005)330.
35.Xu,Y.H.,Chen,C.P., Wang,X.L, Lei,Y.Q.,and Wang,Q.D., J. AlloysCompd., 337(2002)214.
36.Shu,K., Zhang,S., Lei,Y., Lu,G. and Wang,Q., J. Alloys Compd., 349(2003)237
37.Shim,J. H., Byun, J. S.,Cho, Y. W., Scripta Mater., 47(2002)493.
38.Jin,H. B., Cao,M. S., Chen,Y. X. and Li,J. T.,Ceramics International., 34(2008)1268.
39.B.H. Lohse, A. Calka and D. Wexler, J. Alloys Compd., 394(2005)149
40.H.R. Orthner, R. Tomasi and W.J. Botta ,Materials Science and Engineering., (2002)203
41.Quan Yuan, Yong Zheng and Haijun Yu., Int. Journal of Refractory Metals & Hard Materials., 27(2009)698.
42.D. William and Callister, JR., Materials Science and Engineering., Wiley.,1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top