跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳正剛
研究生(外文):Cheng-Kang Chen
論文名稱:高強度高延性低鐵壓鑄鋁合金
論文名稱(外文):High Strength High Ductility Die Casting Al Alloy with Low Iron Content
指導教授:楊智富楊智富引用關係
指導教授(外文):Chih-Fu Yang
口試委員:楊智富
口試委員(外文):Chih-Fu Yang
口試日期:2015-07-23
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:141
中文關鍵詞:ADC3鋁合金低鐵高強度高延性
外文關鍵詞:high strength high ductilityADC3 Al alloylow-iron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究以ADC3鋁合金 (Al-9.5Si-0.8Fe-0.4Mg)為基礎材料,嘗試開發低鐵與無鐵高強度高延性壓鑄鋁合金。實驗內容主要包括以下兩部份:(一)探討不同含鐵量及成分微調之ADC3鋁合金之微觀組織與機械性質。 (二)利用T5及共晶矽球化等熱處理來提升改良型ADC3系列鋁合金之機械性質,以獲致高強度高延性之壓鑄鋁合金。
實驗結果顯示,對重力鑄造之ADC3系列鋁合金將其含鐵量由0.8%降至0.4%時,其富鐵相即大幅減少,有效的去除易招致應力集中之富鐵相而提升延伸率。在所探討之數種低鐵(0.4%Fe)ADC3系列合金中,ADC3S2(Al-9.5Si-0.4Fe-0.4Mg-0.3Cr-0.3Zr-0.02Sr)因添加了Cr與Zr元素以補償強度之不足,使得ADC3S2即為高強度高延性之改良合金;在無鐵ADC3系列合金則以ADC3S7 (Al-9.5Si-0Fe-0Mg
-0.6Mn-0.3Cr-0.3Zr-0.02Sr),顯現較佳之機械性質。當對ADC3(0.8Fe)、ADC3S2(0.4Fe)及ADC3S7(0Fe)等三種壓鑄鋁合金進行比較時可發現,在鑄造狀態時,ADC3S2及ADC3S7之機械性質相近且優於ADC3,而ADC3S2及ADC3S7之降伏強度、抗拉強度及延伸率之範圍分別落在190~192 MPa、296~298 MPa及8.1~8.2%。當施予175℃/8小時之T5處理來提升合金強度時,低鐵(0.4%Fe)之ADC3S2合金較高鐵(0.8%Fe)之ADC3及無鐵之ADC3S7鋁合金,具有更佳之機械性質表現,其降伏強度、抗拉強度及延伸率分別達到260 MPa、339 MPa及7.8%,可稱為最佳之高強度高延性改良型合金。若施予350℃/0.5小時之共晶矽球化處理來提升合金延性時,則三種不同鐵含量之壓鑄ADC3系列合金(ADC3、ADC3S2及ADC3S7)其機械性質相似,而其降伏強度、抗拉強度及延伸率之範圍落在146~158 MPa、224~245 MPa及12.3%~15.0%。
An investigation on the development of high strength high ductility die casting Al alloys with low-none iron content, based on a ADC3 Al alloy (Al-9.5Si-0.8Fe-0.4Mg), was carried out in this study. The first part of this study was to examine the microstructures and the mechanical properties of a series of ADC3-base alloys with different iron content and modified alloy compositions. The second part of this study utilized a T5 and a spheroidization heat treatments to further improve the mechanical properties of the modified ADC3-base alloys.
The results show that, when iron content in gravity cast ADC3-base alloys was reduced from 0.8% to 0.4%, the amount of plate-like iron-rich compound with sharp edges was found decreased significantly. As such, the ductility of the low-iron ADC3-base alloys increase accordingly. Among the low-iron ADC3-base alloys studied the ADC3S2 alloy containing Cr and Zr (Al-9.5Si-0.4Fe-0.4Mg-0.3Cr-0.3Zr-0.02Sr) exhibited the best combination of high mechanical strength and high ductility. While in the iron-free ADC3-base alloys studied the non-
heat–treatable ADC3S7 alloy (Al-9.5Si-0Fe-0Mg-0.6Mn-0.3Cr-0.3Zr-
0.02Sr) exhibited the best combination of high mechanical strength and high ductility. In comparisons of mechanical properties in the as-cast condition of die casting ADC3 (0.8 Fe), ADC3S2 (0.4 Fe) and ADC3S7 (Fe-free) alloys, the mechanical properties of low-iron ADC3S2 and iron-free ADC3S7 Al alloys are very similar and better than that of ADC3 (0.8 Fe). The YS, UTS and ductility values of as-cast ADC3S2 and ADC3S7 alloys are in the range of 190~192 MPa, 296~298 MPa and 8.1~8.2%, respectively. When subjected to a T5 treatment at 175oC for 8 h, the die cast ADC3S2 exhibited far better mechanical properties than the other two alloys, with YS, UTS and ductility of 260 MPa, 339 MPa and 7.8%, respectively. However, when subjected to the spheroidization treatment at 350oC for 0.5 h, the mechanical properties of three die cast alloys are very alike. The YS, UTS and ductility values in the die casting ADC3 (0.8 Fe), ADC3S2 (0.4 Fe) and ADC3S7 (Fe-free) alloys are in the range of 146~158 MPa, 224~245 MPa and 12.3%~15.0%, respectively.
第一章 導論 1
第二章文獻回顧 3
2.1高壓鑄造鋁合金 3
2.1.1 高壓鑄造 3
2.1.2 鑄造用鋁矽合金 3
2.2 提升壓鑄Al-Si-Mg合金之強度與延性 7
2.2.1合金元素之效果 8
2.2.2壓鑄Al-Si-Mg合金之強化 10
2.2.3壓鑄Al-Si-Mg合金之延性改善 16
2.3新型壓鑄無鐵鋁矽合金 18
第三章 實驗步驟 21
3.1合金熔煉與試片製備 22
3.1.1重力鑄造 22
3.1.2高壓鑄造 24
3.2 化學成分分析 24
3.3 金相觀察 25
3.4熱處理製程 25
3.5機械性質量測 26
3.5.1硬度量測 26
3.5.2拉伸試驗 26
3.6破斷面分析 27
第四章 結果與討論 28
4.1顯微組織 28
4.1.1 重力鑄造ADC3系列鋁合金之微觀組織 28
(1) ADC3顯微組織 28
(2) 添加Sr對ADC3鋁合金重力鑄造組織之影響 29
(3) 降低Fe、Mg含量對ADC3S鋁合金微觀組織之影響 30
(4) 添加Cr、Mn、Zr元素對ADC3系列鋁合金微觀組織之影響 31
4.1.2壓力鑄造ADC3系列鋁合金之微觀組織 32
(1)ADC3顯微組織 32
(2) 添加Sr對壓鑄造ADC3系列鋁合金組織之影響 33
4.1.3 共晶矽球化處理後重鑄與壓鑄ADC3鋁合金之微觀組織 33
(1)重鑄ADC3鋁合金經共晶矽球化處理前後之顯微組織 34
(2)壓鑄ADC3系列鋁合金經共晶矽球化處理前後之顯微組織 35
4.2 ADC3系列鋁合金之T5時效行為 36
4.3 鑄造狀態ADC3系列鋁合金之機械性質 37
4.3.1 成分微調對重力鑄造ADC3系列鋁合金機械性質之影響 37
(1) ADC3鋁合金之機械性質及其添加Sr之效果 37
(2) 降低Fe含量對ADC3S鋁合金之效果 37
(3) 添加Mn含量對ADC3S3鋁合金之效果 38
(4) 降低Mg含量對ADC3S4鋁合金之效果 39
(5) 添加Zr、Cr元素對ADC3S1及ADC3S6鋁合金之效果 40
4.3.2 ADC3、ADC3S2及ADC3S7等三種代表性合金之機械性質分析 41
(1)重鑄ADC3、ADC3S2及ADC3S7鋁合金之機械性質比較 41
(2)壓鑄ADC3、ADC3S2及ADC3S7鋁合金之機械性質比較 42
4.4 重力鑄造A380系列鋁合金之破斷面分析 44
4.4.1 近破斷區顯微組織 45
4.4.2 破斷面SEM觀察 46
4.5 熱處理對ADC3系列鋁合金機械性質之影響 49
4.5.1重力鑄造試片 49
(1) T5時效熱處理(175°C/8h) 49
(2) 共晶矽球化處理(350°C/30min) 50
4.5.2 高壓鑄造 51
(1) T5時效熱處理(175°C/8h) 51
(2) 共晶矽球化處理(350°C/30min) 52
4.7綜合比較T5及共晶矽球化處理後ADC3系列鋁合金之機械性質 53
4.7.1 綜合討論ADC3系列鋁合金經T5熱處理後之機械性質比較 53
4.7.2 綜合討論ADC3系列鋁合金經共晶矽球化處理後之機械性質 55
第五章 結論 57
[1] William F. Smith, “Structure and Properties of Engineering Alloys, ” McGRAW-HILL International Edition, 1993, p542~544.
[2] 楊榮顯,工程材料學,修訂二版,全華科技圖書出版,民國94年,p.15-28~15-30。
[3] J. E. Gruzleski, B. M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys,” American Foundrymen’s Society, Schaumburg, IL (1990).
[4] Nonferrous Metal Products, Annual Book of ASTM Standards, 2000, V 02.02, p634.
[5] 吳漢宗、楊智超,材料手冊-非鐵金屬材料,中國材料學學會,1983, p.25.
[6] JIS Handbook Non-Ferrous Materials and Metallurgy, Japanese Standards Association, 1987-88.
[7] 陳佑昇,“ADC12壓鑄鋁合金共振疲勞壽命之可靠度分析”,國立成功大學材料科學及工程研究所碩士論文,2000。
[8] http://www.alcanindustries.com, Alcan Industries, 06/30.
[9] 日本輕金屬學會委員,鋁合金之組織與性質,日本輕金屬學會,p.278~279
[10] 王盈琁,“添加合金元素對Al-17%Si合金高溫機械性質之影響”,大同大學材料工程研究所碩士論文,2010。
[11] Alloy Phase Diagrams, ASM Handbook, 1999, Volume 3.
[12] C.H. Caceres, M.B. Djurdjevic, T.J. Stockwell and J.H. Sokolowski, “Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys”, Scripta Mater., 1999, Volume 40, p. 631.
[13] 潘韋龍,“Cu含量對Al-12.5Si-1.0Mg合金熱穩定性與磨耗性質之影響”,國立中央大學機械工程研究所碩士論文,2007。
[14] C. T. Wu, S. L. Lee, M. H. Hsieh, J. C. Lin, ”Effect of Cu Content on Microstructure and Mechanical Properties of Al-14.5Si-0.5Mg Alloy ”, Materials Characterization, 61 (2010), p.1074~1079.
[15] H.A. Alireza and F. Ajersch, “Effect of Conventional and Rheocasting Processes on Microstructural Characteristics of Hypereutectic Al-Si-Cu-Mg Alloy with Variable Mg Content”, Journal of Materials Processing Technology, 2010, Volume 210, p. 767.
[16] H. Ye, ”An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications”, Journal of Materials Engineering and Performance, 2003, Volume 12, p. 288.
[17] John A. Taylor, “The Effect of Iron in Al-Si Casting Alloys”, Cooperative Research Centre for Cast Metals Manufacturing (CAST), The University of Queensland Brisbane, Australia.
[18] A.M. Samuel and F.H. Samuel, “Effect of Alloying Elements and Dendrite Arm Spacing on the Microstructure and Hardness of An Al-Si-Cu-Mg-Fe-Mn (380) Aluminium Die-Casting Alloy”, Journal of Materials Science, 1995, Volume 30, p. 1698.
[19] X.U. Kai, H.P. Liu, F. Wang, B.Y. Yuan and X.J. Zhang “Influences of Magnesium Content on Morphology of Mg2Si Crystals of in-situ Hypereutectic Al-Si Alloy”, Mining and Metallurgical Engineering, 2008, Volume 28, No 6.
[20] B. Yang, F. Wang, J.S. Zhang, B.Q. Xiong and X.J. Duan, “The Effect of Mn on the Microstructure of Spray-Deposited
[21] Yucle Birol, "The effect of sample preparation on the DSC analysis of 6061 alloy" , Journal of Materials Science 40, 2005, p.6357~6361.
[22] Long Cheng Doan, Yasuya Ohmori and Kiyomichi Nakai, "Preciptation and Dissolution Reaction in a 6061 Aluminum Alloy", Materials Transsactions, JIM, Vol. 41, No.2(2000), p.300~305.

[23] 林煜昆,壓鑄技術實務,徐氏基金會出版,民國72年,p.75-79。
[24] C.J. Peel, B. Evans, C.A. Baker, D.A. Bennett, P.J. Gregson, "The Development and Application of Improved Aluminum-Lithium Alloys", Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, 1983, p.363.
[25] R. Sterner Rainer, US Patent, 1933, 26, 1940922
[26] I.J. Polmear, Light Alloys-Metallurgy of the Light Metals, 2nd ed., Edward Arnold, London, England, 1989, p.18.
[27] "Aluminum", Metals Handbook, Ninth Edition, Vol. 2,Properties and Selection: Nonferrous Alloys and Pure Metals, American Society for Metals, 1980, p.28.
[28] G. K. Sigworth: “Theoretical and practical aspects of the modification of Al-Si alloys”, AFS Trans., 66 (1983), pp. 7-16.
[29] M. D. Hanna, S. Z. Lu and A. Hellawell: “Modification in aluminum-silicon system”, Metall. Trans., 15A (1984), pp. 459-469.
[30] B. Closset and J. E. Gruzleski: “Structure and properties of hypoeutectic Al-Si-Mg alloys modified with pure strontium”, Metall. Trans. A, 13A (1982), pp. 945-951.
[31] M. Shamsuzzoha, L. M. Hogan and J. T. Berry: “Effects of modifying agents on crystallography and growth of silicon phase in Al-Si casting alloys”, AFS Trans., (1993), pp. 999-1005.
[32] L. F. Mondolfo: Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p.491 and p. 534-536.
[33] G. K. Sigworth: “Determining grain size and eutectic modification in aluminum alloy castings”, Modern Casting, July (1987), pp. 23-25.
[34]. D. L. Colwell and R. J. Kissling: “Die and permanent mold casting aluminum alloy minor elements”, AFS Trans., 69 (1961), pp. 610-615.
[35] A. Couture: “Iron in aluminum casting alloys-A literature survey”, AFS Int. Cast Metals J., 6 (1981), pp. 9-17.
[36] W. Bonsack: “Effects of minor alloying elements on aluminum casting alloys”, ASTM Bull. No. 124, Oct. (1943), pp. 41-51.
[37] Michihiro Tagami and Kokichi Hashiura: “Influence of Fe contents on fracture toughness of Al-7.5% Si-3% Cu-0.3% Mg alloy castings”, 輕金屬, 31 (1981), pp. 479-483.
[38] S.G. Shabestari: “The effect of iron and manganese on the cormation of intermetallic compounds in aluminum–silicon alloys”, Materials Science and Engineering A 383 (2004) 289–298.
[39] Yong Zhang, Hongliang Zheng, Yue Liu, Lei Shi, Qingming Zhao, Xuelei Tian: “Efficient use of iron impurity in Al–Si alloys”, Journal of Alloys and Compounds 615 (2014) 594–597
[40] Anna Zovi, Federico Casarotto: “Silafont-36,The Low Iron Ductile Die Casting Alloy Development and Applications”, La Metallurgia Italiana, Giugno 2007
[41] F. Casarotto, A. J. Franke and R. Franke: “High-pressure die-cast (HPDC) aluminium alloys for automotive applications”, Advanced Materials in Automotive Engineering, Woodhead Publishing, 1st edition, March 6, 2012, pp.109-149.
[42] K.-J. Kim, H.-J. Kim and C.-Y. Jeong: “Mechanical and die soldering properties of Al–Si–Mg–Mn cast alloy”, Materials Research Innovations, 2014, Vol.18, pp.667-672.
[43] 劉文海,壓鑄鋁合金的新材料及新應用,台灣輕金屬協會,2014發行。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top