跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭星瑜
研究生(外文):Shing-Yu Peng
論文名稱:經電漿處理之人造石墨及以電漿輔助化學氣相沉積法製備之非晶碳膜的潤濕行為
論文名稱(外文):Wettability of Artificial Graphites after Plasma Treatment and Amorphous Carbon Films Synthesized by Plasma Enhanced Chemical Vapor Deposition
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
口試委員:曾信雄
口試委員(外文):Shinn-Shyong Tzeng
口試日期:2015-07-29
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:99
中文關鍵詞:非晶碳膜射頻電漿輔助化學氣相沉積接觸角潤濕性
外文關鍵詞:contact angleRF plasma enhanced chemical vapor deposition( amorphous carbon filmswettability)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面潤濕性是非晶碳膜在應用時的重要性質之一,因此本實驗利用射頻電漿輔助化學氣相沉積系統(RF-PECVD)以不同沉積功率以及不同比例之C2H2/H2 和CH4/H2氣氛在矽晶片上沉積具不同結構與不同含氫量的非晶碳膜,最後利用類鑽碳膜與人工石墨(IG11)經不同時間之氫氣電漿、氧氣電漿分別進行電漿後處理來修飾表面,並探討碳膜和IG11之的接觸角之改變以及水接觸角隨時間變化情形。
實驗結果顯示,本研究所得碳膜粗糙度均小於5nm,其對接觸角影響小,因此接觸角大小主要與鍵結型態有關;接觸角量測結果顯示,隨著電將功率增加至40W,接觸角下降,但當功率由40W增加至95W,接觸角上升。當離子入射能量太低,碳膜沉積多以C-H鍵結組成,接觸角較大且碳膜趨近高分子膜,質地相當軟;沉積功率較高雖然薄膜sp3結構較多、機械性質較佳,但是薄膜表面會受到高能量轉變成之熱能影響,使得薄膜表面趨向於類石墨碳膜,此結果使原本接觸角低的情形改變,變成較疏水的特性。在沉積過程中添加氫氣會使碳膜表面形成C-H鍵結,造成薄膜表面的懸鍵數量降低,碳膜表面穩定、接觸角提高。表面電漿後處理方面,當碳膜或是人造石墨以氧電漿後處理,一開始試片受到偶極-偶極作用力影響,水接觸角變得超親水,隨著放置時間增加,接觸角開始增加,最後增加到約130∘為疏水性質,改變範圍相當度大,從超親水變為接近超疏水之狀態。
Wettability is an important property to be considered in several applications for amorphous carbon films. Radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) was used to deposit amorphous carbon films with different structure and hydrogen contents using different deposition work and hydrogen contents using methane and acetylene at different CH4/H2 and C2H2/H2 ratios. The influences of deposition work and hydrogen content on the water contact angle (WCA) were investigated. Finally, the surfaces of carbon films and artificial graphites (IG11) were modified by H2 plasma and O2 plasma treatments at different treatment times, and their effects on WCA were studied. Experimental results showed that the WCA of carbon films decreased with increasing deposition work up to 40W, then increased from 40W to 95W. Since the roughness of the carbon films was less than 5nm, the main parameter affecting the WCA is the bonding type. When ion energy is low, the carbon films are mostly composed of C-H bond, the films are polymer-like and the contact angle is large. In contrast, when larger ion incidence energy is used, the carbon films have larger sp3/sp2 ratio and better mechanical properties, but the WCA increases due to the surface structure transition from sp3 to sp2 resulting from the high temperature due to high power. For the carbon films deposited using CH4/H2 and C2H2/H2, more C-H bonding can be formed and the number of dangling bond is reduced, leading to lower surface energy and a higher WCA. For the oxygen plasma post-treatment on carbon films and artificial graphites, the superhydrophilic characteristic was fond after the treatment, then the WCA increased with time. Finally, the superhydrophobic characteristic was observed after several days with a WCA as high as 130°.
目錄
摘要I
ABSTRACTII
目錄IV
圖目錄VII
表目錄XI
第一章 緒論1
1-1 前言1
1-2 實驗目的2
第二章 文獻回顧3
2-1 碳材料3
2-2 非晶碳膜之合成6
2-2-1 製程系統介紹6
2-2-2 射頻電漿輔助化學氣相沉積系統6
2-2-3 成膜機制6
2-3 影響潤濕性質因素10
2-3-1 潤濕性質介紹10
2-3-2 表面形貌/粗糙度潤濕行為之影響11
2-3-3 不同sp2、sp3含量對潤濕行為之影響13
2-3-4 混合不同C/H比對潤濕性質之影響14
2-3-5 隨不同時間接觸角之變化14
2-4 電漿後處理效應16
2-4-1 氫電漿後處理對碳材料潤濕行為之影響16
2-4-2 氧電漿後處理對碳材料之潤濕行為之影響16
第三章 實驗流程與實驗設備18
3-1 實驗流程18
3-1-1 碳材料18
3-1-2 非晶碳膜製備18
3-1-3 電漿後處理19
3-2 實驗設備與檢測儀器23
3-2-1 沉積系統23
3-2-2 冷場式掃描顯微鏡25
3-2-3 原子力顯微鏡(Atomic Force Microscopy,AFM) 25
3-2-4 拉曼光譜(Raman Spectra,RS)26
3-2-5 接觸角26
3-2-6 傅立葉轉換紅外光譜(Fourier transform unframed spectrometer,FTIR)27
3-2-7 奈米壓痕27
第四章 結果與討論29
4-1 碳材料之潤濕行為29
4-2 沉積功率對非晶碳膜表面之潤濕影響32
4-2-1 不同沉積功率對碳膜偏壓之影響32
4-2-2 不同沉積功率對碳膜厚度之影響34
4-2-3 不同沉積功率對碳膜粗糙度之影響36
4-2-4 不同沉積功率對碳膜結構之影響39
4-2-5 不同沉積功率對碳膜潤濕行為之影響43
4-2-6 不同沉積功率對碳膜硬度之影響45
4-3 不同H/C比對非晶碳膜表面之潤濕性影響50
4-3-1 不同沉積H/C比對自偏壓之影響50
4-3-2 不同沉積H/C比對碳膜厚度之影響51
4-3-3 不同H/C比對碳膜粗糙度之影響53
4-3-4 不同H/C比對碳膜結構之影響56
4-3-5 不同H/C比對碳膜潤濕行為之影響57
4-3-6 不同H/C比對碳膜硬度及模數之影響59
4-4 經電漿後處理之非晶碳膜及人造石墨之潤濕行為61
4-4-1 氫電漿後處理61
4-4-2 氧電漿後處理68
第五章 結論77
參考文獻79
[1]Y. Zhou, B. Wang, X. Song, E. Li, G. Li, S. Zhao, H. Yan. Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Applied Surface Science. 253 (2006) 2690-2694.
[2]Y. Zhou, B. Wang, X. Zhang, M. Zhao, E. Li, H. Yan. The modifications of the surface wettability of amorphous carbon films. Colloids and Surfaces A. 335 (2009) 128-132.
[3]A. Grigonis , V. Sablinskas , M. Silinskas, D. Tribandis. The role of hydrogen in a-C:H films deposited from hexane or acetylene using direct ion beam deposition method. Vacuum. 75 (2004) 261-267.
[4]L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova. Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films. Diamond and Related Materials. 11 (2002) 845-850.
[5]Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade1, L. Li and H. Liu1. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature materials. (2013) 1-7.
[6]“原子世界”香港中文大學物理系網站. [電子資料庫].
[7]J. Robertson. Diamond like amorphous carbon. Materials Science and Engineering. R37 (2002) 129-281.
[8]H. Nalwa. Handbooks of thin film materials. 2002.
[9]陳邦嘗. RF電漿輔助化學氣相沉積法成長類鑽碳膜及非晶碳膜. 大同大學材料工程學系碩士論文. 2003.
[10]E. Tomasella, L. Thomas, M. Dubois, C. Meunier. Structural and mechanical properties of a-C:H thin films grown by RF-PECVD. Diamond & Related Materials. 13 (2004) 1618 -1624.
[11]J. Robertson. Properties of diamond-like carbon. Surface and Coatings Technology. 50 (1992) 185-203.
[12]P. Koidl, Ch. Wild, B. Dischler, J. Wagner and M. Ramsteiner. Plasma Deposition Properties and Structure of Amorphous Hydrogenated Carbon Films. Materials Science Forum. 52-53 (1990) 41-70.
[13]A. von Keudell, M. Meier, C. Hopf. Growth mechanism of amorphous hydrogenated carbon. Diamond and Related Materials. 11 (2002) 969-975.
[14]M. Silinskas, A. Grigonis, V. Kulikauskas, I. Manika. Hydrogen influence on the structure and properties of amorphous hydrogenated carbon films deposited by direct ion beam. Thin Solid Films 516 (2008) 1683-1692.
[15]C. Hopf, T. Schwarz-Selinger, W. Jacob, and A. von Keudell. Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces. Journal of Applied Physics. 87 (2000) 2719-2725.
[16]J. Bico, U. Thiele, D. Que´re´. Wetting of textured surfaces. Colloids and Surfaces A. 206 (2002) 41-46.
[17]Y. Yuan and T. R. Lee. Contact Angle and Wetting Properties. Surface Science Techniques. 51 (2013) 3-34.
[18]D. Banerjee, S. Mukherjee, K.K. Chattopadhyay. Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films. Carbon. 48 (2010) 1025-1031.
[19]Z. Sun. Morphological features of diamond-like carbon films deposited by plasma-enhanced CVD. Journal of Non-Crystalline Solids. 261 (2000) 211-217.
[20]A. Marmur. Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? Langmuir. 19 (2003) 8343-8348.
[21]M. L. Wu, K. Howard, K. Grannen, J. Guib, G. C. Rauch, P. J. Sides. Properties and durability of thin a-C:H overcoats produced by plasma enhanced chemical vapor deposition. Thin Solid Films. 377-378 (2000) 249-253.
[22]L. Yu. Ostrovskaya, A.P. Dementiev, I.I. Kulakova, V.G. Ralchenko. Chemical state and wettability of ion-irradiated diamond surfaces. Diamond & Related Materials. 14 (2005) 486-490.
[23]A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li. Understanding the intrinsic water wettability of graphite. Carbon. 74 (2014) 218-225.
[24]C. Jongwannasiri and S. Watanabe. Effects of RF Power and Treatment Time on Wettability of Oxygen Plasma-Treated Diamond-like Carbon Thin Films. International Journal of Chemical Engineering and Applications. 5 (2014) 13-16.
[25]J. O. Hansen, R. G. Copperthwaite, T. E. Derry. A Tensiometric Study of Diamond ( 111 ) and (11 O) Faces. Journal of Colloid and Interface Science. 130 (1989) 347-358.
[26]V. G. Aleshin, A. A. Smekhov, G. P. Bogatyriova, V. B. Kruk. The Chemistry of the Diumond Surface. Naukova Dumka, Kiev. (1990) 200.
[27]Y. Yin, L. Hang, J. Xu, D. R. McKenzie, M. M. M. Bilek. Surface adsorption and wetting properties of amorphous diamond-like carbon thin films for biomedical applications. Thin Solid Films. 516 (2008) 5157-5161.
[28]Y. M. Wang, K. W. Wong, S. T. Lee, M. N. Gamoc, I. Sakaguchi, K. P. Loh, T. Ando. Recent studies on diamond surfaces. Diamond and Related Materials. 9 (2000) 1582-1590.
[29]B. Cortese, D. Caschera, F. Federici, G. M. Ingo and G. Gigli. Superhydrophobic fabrics for oil-water separation through a diamond like carbon (DLC) coating. Journal of Materials Chemistry A. 2 (2014) 6781-6789.
[30]B. Bhushan. Lotus Effect: Surfaces with RoughnessInduced Super hydrophobicity, Self-Cleanin and Low Adhesion. Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics. (2009) 1-46.
[31]K. P. Furlan, A. N. Klein and D. Hotza. Diamond-like caebon films deposited by hrdrocarbon plasma sources. Advanced Materials Science. 34 (2013) 165-172.
[32]J. Ristein, R. T. Stief, L. Ley. A comparative analysis a-C:H by infrared spectroscopy and mass selected thermal effusion. Journal of applied physics. 84 (1998) 3836-3847.
[33]X. B. Yan, T. Xu, S. S. Yue, H. W. Liu, Q. J. Xue, S. R. Yang. Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor. Diamond & Related Materials. 14 (2005) 1342-1347.
[34]Th. Uelzen, J. Muller. Wettability enhancement by rough surfaces generated by thin film technology. Thin Solid Films. 434 (2003) 311-315.
[35]張瑞慶. 奈米壓痕技術與應用. 聖約翰科技大學機械系教授.
[36]I. Sh. Trakhtenberg, S. A. Plotnikov, V. B. Vykhodets, V. A. Pavlov, G. A. Raspopova. Modification of amorphous diamond-like films by bombardment with low-energy ions. Diamond and Related Materials. 5 (1996) 943-946.
[37]M. J. Paterson. An investigation of the role of hydrogen in ion beam deposited a-C:H. Diamond and Related Materials. 7 (1998) 908-915.
[38]F. Piazza, G. Morell. Wettability of hydrogenated tetrahedral amorphous carbon. Diamond & Related Materials. 18 (2009) 43-50.
[39]G. C. Xu, Y. Hibino, K. Kurotobi, Y. Suzuki, M. Iwaki. Hydrogen contents and related properties of a-C:H formed with unbalanced magnetron sputtering. Nuclear Instruments and Methods B. 206 (2003) 330-333.
[40]P. W. Shum, Z. F. Zhou, K. Y. Li. To increase the hydrophobicity and wear resistance of diamond-like carbon coatings by surface texturing using laser ablation process. Thin Solid Films 544 (2013) 472-476.
[41]M. Massi, J. M. J. Ocampo, H. S. Maciel, K. Grigorov, C. Otani, L. V. Santos, R. D. Mansano. Plasma etching of DLC films for microfluidic channels. Microelectronics Journal. 34 (2003) 635-638.
[42]J. Robertson. Diamond-like carbon. Diamond and Related Materials. 3 (1994) 1789-1796.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文