跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴柏丞
研究生(外文):Bo-cheng Lai
論文名稱:Mg1-xMxZr(Ta1-yVy)2O8(M = Ca,Sr)陶瓷微波介電性質之研究
論文名稱(外文):MICROWAVE DIELECTRIC PROPERTIES OF Mg1-xMxZr(Ta1-yVy)2O8 CERAMICS
指導教授:林永仁林永仁引用關係
指導教授(外文):Yung-jen Lin
口試委員:林永仁
口試委員(外文):Yung-jen Lin
口試日期:2015-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:微波介電MgZrTa2O8品質因子鈣摻雜鍶摻雜釩摻雜
外文關鍵詞:Sr dopingCa dopingquality factorMgZrTa2O8microwave dielectricV doping.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討黑鎢礦MgZrTa2O8系統之微波介電特性。實驗分為三部分,第一部分為探討MgZrTa2O8之微波介電特性,實驗結果顯示MgZrTa2O8為單一黑鎢礦結構,經燒結1350 ℃後可達最緻密,介電特性方面,介電常數為19.45,品質因子達54,031 GHz,共振頻率飄移係數為-36.5 ppm/℃。
第二部分以第一部分MgZrTa2O8作為基材,探討Ca或Sr摻雜對MgZrTa2O8的影響 (Mg1-xCaxZrTa2O8 ; Mg1-xSrxZrTa2O8)。燒結後之試片經由XRD分析,除了黑鎢礦主相外,產生斜方晶結構的CaTa2O6或SrTa2O6,這兩個相皆隨著Ca,Sr摻雜量多而變多。當大量之斜方晶結構的產生,會使材料介電特性降低及燒結性變差,但微量的Ca摻雜(x = 0.1),僅生成微量斜方CaTa2O6時,可提高其介電特性。
第三部分則以V置換Ta,因V2O5熔點較低,可以降低其熱處理之溫度,但是由於內部產生相變化使得其體密度下降或導致試片崩解。
本研究所得最佳試片為Mg0.9Ca0.1ZrTa2O8 (M = Ca,x = 0.1),經過1500 ℃燒結,其密度為7.24 g/cm3;介電常數22.5;品質因子231,951 GHz;共振頻率溫度飄移係數-36.1 ppm/℃。
MgZrTa2O8-based ceramics is studied for its microwave dielectric properties in this research. The study is divided into three parts. The first part is to investigate microwave dielectric properties of MgZrTa2O8. The results show that it formed a single wolframite structure. It reached highest density after sintered at 1350 ℃. Its properties were: εr = 19.45; Q×f = 54,031 GHz; τf = -36.5 ppm /℃.
The second part is to study the effects of Ca or Sr doping in MgZrTa2O8. In both kinds of doping, the sintered samples formed second phases of orthorhombic CaTa2O6 or SrTa2O6 , respectively, in addition to the main MgZrTa2O8 wolframite. The dielectric properties and the sinterability of the samples were impaired when large amounts of orthorhombic CaTa2O6 or SrTa2O6 were formed. Nevertheless, small amount of Ca doping (x=0.1) could improve the dielectric properties when orthorhombic CaTa2O6 was little.
The third part was V substitution for Ta. The heat treatment temperatures were lowered because V2O5 has low melting temperature. Due the formation of V-containing phases, the samples exhibited low sintered density or even would be broken.
The sample with the best sintered and dielectric properties was Mg0.9Ca0.1ZrTa2O8 (x = 0.1). Its properties were: density = 7.24 g/cm3; εr = 2.5; Q×f = 231,951 GHz; τf = -36.1 ppm /℃.
摘要i
ABSTRACTii
目次iv
圖次v
表次ix
第壹章 緒論1
第一節 前言1
第二節 研究目的1
第貳章 文獻回顧3
第一節 近代微波介電陶瓷之發展3
第二節 微波介電陶瓷的關鍵參數4
第三節 鎢酸鹽(Tungstate)11
第參章 實驗21
第一節 實驗藥品21
第二節 實驗流程22
第三節 量測與分析儀器26
第肆章 結果與討論33
第一節 MgZrTa2O833
第二節 Mg1-xMxZrTa2O8(M = Ca,Sr)41
第三節 MgZr(Ta1-yVy)2O869
第伍章 結論79
參考文獻80
[1]Reaney, I.M., and Iddles, D. (2006). Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 89, 2063–2072.
[2]Jawahar, I. N., Mohanan, P., and Sebastian, M.T (2003). A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B=Nb, Ta)microwave dielectric ceramics. Materials Letters, 57, 4043– 4048.
[3]Cheng, Y., Zuo, R.H., and Lv, Y. (2013). Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics. Ceramics International, 39, 8681–8685.
[4]Cohn, S. B. (1968). Microwave bandpass filters contain high Q dielectric resonator. IEEE Transactions on Microwave Theory and Techniques, 218-227.
[5]國立編譯館(民90)。電子陶瓷材料(6版)。台北縣:財團法人徐氏文教基金會。
[6]Moulson, A. J., and Herbert, J. M. (1990). Electroceramics: Materials, Properties, Applications, Chapman and Hall, New York.
[7]Sleight, A. W. (1972). Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallography Section B, 28, 2899–2902.
[8]Sebastian, M. T. (2008). Dielectric Materials for Wireless Communication, Elsevier, Oxford, UK.
[9]Choi, G. K., Kim, J. R., Yoon, S. H., and Hong, K. S. (2007). Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society, 27, 3063–3067.
[10]Johnson, L. F., Boyd, G. D., Nassau, K., and Soden, R. R. (1962). Continuous operation of a solid-state optical maser. Physical Review Letters, 126(4), 1406.
[11]Sharma, N., Shaju, K. M., Subba Rao, G. V., Chowdari, B. V. R., Dong, Z. L., and White, T. J. (2004). Carbon-coated nanophase CaMoO4 as anode material. Chemistry of Materials, 16 (3), pp 504–512.
[12]Kuzmin, A., and Purans, J. (2001) Local atomic and electronic structure of tungsten ions in AWO4 crystals of scheelite and wolframite types. Radiation Measurements, 33, 583–586.
[13]http://mineral.galleries.com/
[14]Pullar, R. C., Farrah, S., and Alford, N. M. (2007). MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. Journal of the European Ceramic Society 27, 1059–1063.
[15]Guo, J., Zhou, D., Wang, H., and Yao, X. (2011). Microwave dielectric properties of (1−x)ZnMoO4–xTiO2 composite ceramics. Journal of Alloys and Compounds, 509, 5863–5865.
[16]Surendran, K. P., Santha, N., Mohanan, P., and Sebastian, M. T. (2004). A low loss dielectric substrate in ZnAl2O4–TiO2 system for microelectronic applications. Journal of Applied Physical, 41, 301–306.
[17]Cho, I. S., Kang, S. K., Kim, D. W., and Hong, K. S. (2006). Mixture behavior and microwave dielectric properties of (1-x)Ca2P2O7-xTiO2. Journal of the European Ceramic Society, 26, [10-11] 2007-2010.
[18]Yoon, S. H., Choi, G. K., Kim, D. W., Cho, S. Y., and Hong, K. S. (2007). Mixture behavior and microwave dielectric properties of (1-x)CaWO4-xTiO2. Journal of the European Ceramic Society, 27, 3087–3091.
[19]Subodh, G., and Sebastian, M. T. (2007). Glass-free Zn2Te3O8 microwave ceramic for LTCC applications. Journal of American Ceramic Society, 90, 2266–2268.
[20]Shih, C. F., Li, W. M., Lin, M. M., Hsiao, C. Y., and Hung, K. T. (2009). Low-temperature sintered Zn2TiO4:TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency. Journal of Alloys and Compounds, 485, 408–412.
[21]Tang, Y., Fangn, L., Su, C., and Zhang, H. (2014). A high Q and temperature stable microwave dielectric ceramic Ba4LiTa2SbO12. Ceramics International, l40, 7633–7636.
[22]Zhou, D., Randall, C. A., Pang, L. X., Wang, H., Guo, J., Zhang, G. Q., Wu, X. G., Shui, L., and Yao, X. (2011). Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature. Journal of American Ceramic Society, 94 [2] 348–350.
[23]Kwon, D. K., Lanagan, M. T., and Shrout, T. R. (2005). Microwave dielectric properties and low-temperature cofiring of BaTe4O9 with aluminum metal electrode. Journal of American Ceramic Society, 88, 3419–22.
[24]Zhou, D., Wang, H., Yao, X., and Pang, L. X. (2008). Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic, Journal of American Ceramic Society, 91 [10], 3419–22.
[25]Zhou, D., Wang, H., Pang, L. X., Randall, C. A., and Yao, X. Bi2O3–MoO3 binary system: An alternative ultra low sintering temperature microwave dielectric. Journal of American Ceramic Society, 92[10], 2242–6 (2009).
[26]Liao, Q. W., Li, L. X., Ren, X., and Ding, X. (2011). New low-loss microwave dielectric material ZnTiNbTaO8. Journal of American Ceramic Society, 94 [10] 3237–3240.
[27]Kim, E. S., Jeon, C. J., and Clem, P. G. (2012). Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) Ceramics. Journal of American Ceramic Society, 95, 2934.
[28]Kim, E.S., Chun, B.S., Freer, R., and Cernik, R.J. (2010). Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. Journal of the European Ceramic Society, 30, 1731.
[29]Ramarao, S.D., and Murthy, V.R.K. (2013). Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scripta Materialia, 69, 274–277.
[30]Thomas, D., and Sebastian, M.T. (2012). Effect of Zn2+ substitution on the microwave dielectric properties of LiMgPO4 and the development of a new temperature stable glass free LTCC. Journal of the European Ceramic Society, Soc. 32, 2359-2364.
[31]王宏文 (2005)。微波介電陶瓷(BaxSr1-X)(Zn1/3Nb2/3)O3製程與特性之研究。崑山科技大學電子工程系所碩士論文。
[32]Hakki, B. W., and Coleman, P. D. (1960). A dielectric resonator method of measuring inductive capacities in the range millimeter. IEEE Transactions on Microwave Theory and Techniques, 8, pp. 402-410.
[33]Courtney, W. E. (1970). Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Transactions on Microwave Theory and Techniques, MIT-18, 8, pp. 476-485.
[34]Kobayashi, Y., and Katoh, N. (1985). Measurement of dielectric properties of low-loss materials by dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques, MIT-33, pp. 586-592.
[35]Kobayashi, Y., and Tanaka, S. (1980). Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates. IEEE Transactions on Microwave Theory and Techniques, MIT-28, pp. 1077-1085.
[36]Reeve, D. A. (1969). The binary system CaO-Ta2O5. Journal of the Less Common Metals, 17 [2], 215-222.
[37]Schadow, H., Oppermann, H., and Wehner, B. (1992). Crystal Research and Technology, 27 [5], 691-695.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top