跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張泰權
研究生(外文):Tai-Chuan Chang
論文名稱:建立比對滲碳鋼殘留沃斯田體量之金相標準組織
論文名稱(外文):Establish the standard microstructures for determining the residual austenite content of carburizing steels
指導教授:邱六合
指導教授(外文):Liu-Ho Chiu
口試委員:邱六合
口試委員(外文):Liu-Ho Chiu
口試日期:2015-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:殘留沃斯田鐵殘留應力XRD分析金相法
外文關鍵詞:Metallographic microstructuresResidual stressRetained austeniteXRD method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討滲碳鋼材之殘留沃斯田鐵,一方面以高碳鋼SUJ2與SK2進行淬火回火建立不同含量之殘留沃斯田體標準金相,另一方面以低碳鋼進行鹽浴滲碳處理觀察並以標準金相進行比對,本實驗並以金相法與X光繞射分析sin法與cos法來比較及判定殘留沃斯田體量,並進行高碳鋼淬火回火與低碳鋼鹽浴滲碳件距表層不同深度之殘留應力測定。
金相觀察發現高碳鋼SUJ2與SK2之淬火處理溫度約在940度時,金相上可觀察碳化物已完全固溶回基地,有較明顯之殘留沃斯田體,建立之高碳鋼之殘留沃斯田體量皆不超過25%,由於滲碳氮化試片表面之殘留沃斯田體與含量過高與粒界氧化面積大,會導致分析時產生較大之誤差,故儘量不以最表面之金相建立試片。殘留應力分析,滲碳鋼經滲碳氮化處理後,最表面的殘留應力會因粒界氧化與殘留沃斯田體含量高而壓應力減少,當研磨深度達到20μm時,在金相觀察發現粒界氧化與殘留沃斯田體降低明顯減少而產生殘留應力(壓應力)下降,因為殘留沃斯田體量比例下降,麻田散體比例上升,使得有更高的殘留應力。高碳鋼的殘留應力經過不同溫度淬火皆產生壓應力,而溫度上升並非一定產生較大之壓應力。
經過分析結果之交叉比對與建立高碳鋼標準金相,以D2 Phaser分析殘留沃斯田體量,高碳鋼JIS SUJ2 990度持溫1小時與JIS SK2 990度持溫1小時油淬可以建立5%與10%殘留沃斯田鐵之標準金相。JIS SCM415滲碳氮化4小時距表面深度0.1mm與鹽浴滲碳一小時距表面深度0.15mm可以得到金相試片10% 與5%。
High carbon steels, which have ferrite and carbides matrix, were be transformed to martensite, retained austenite and undissolved carbides after heat treatment. When the austeniting temperature were heated over the Acm, carbides were dissolved and retained austenite were increased. In order to establish the standard metallographic microstructures for determining the residual austenite content of specific carburizing steels, SUJ2 and SK2 steels were used to evaluate and establish the amount of retained austenite by X-ray diffraction analysis. Besides that , the salt bath carburizing of SCM415 steel were conducted to compared the residual austenite and retained stress by the metallographic method and XRD method. In the field application the amount of retained austenite in the carburized case were required below 5%. Establishment of the standard metallographic microstructures at the different amount of retained austenite confirmed by X-ray diffraction analysis has been presented in this study.
中文摘要I
英文摘要III
目錄IV
圖目錄VI
表目錄XI
第一章 前言 1
第二章 文獻回顧 2
2.1 金相法2
2.2 熱處理3
2.3 滲碳處理4
2.4 微觀結構分析7
2.5殘留應力與殘留沃斯田體13
第三章 實驗步驟22
3.1 試片準備23
3.1.1實驗材料製備24
3.2熱處理製程25
3.3測試方法26
3.3.1金相分析26
3.3.2硬度測試26
3.3.3 X光繞射分析27
3.3.4殘留應力量測31
第四章 結果與討論32
4.1金相組織觀察32
4.1.1收料組織32
4.1.2高碳鋼淬火回火金相33
4.1.3高碳鋼收料組織金相圖像分析45
4.1.4低碳鋼鹽浴滲碳淬火回火金相48
4.1.5低碳鋼鹽浴滲碳淬火回火金相圖像分析51
4.2低碳鋼鹽浴滲碳維克氏硬度分析54
4.3 XRD殘留沃斯田鐵含量分析55
4.4殘留應力量測57
4.5殘留沃斯田體量之比對分析59
4.5.1建立高碳鋼金相61
4.5.2比對滲碳鋼金相62
第五章 結論64
第六章 參考文獻66
參考文獻
[1]K.E. Thelning, Steel and its heat treatment, second edition, pp. 42-46.
[2]K.E. Thelning, Steel and its heat treatment, second edition, pp. 26.
[3]M. F. Carlson and B.V. Narasimha, G. Thomas, “The effect of austenitizing temperature upon the microstructure and mechanical properties of experimental Fe/Cr/C steel,” Metall. Trans. Vol.10A(9), 1979,pp.1273-1281.
[4]M. F. Chai, C Laird, “Mechanisms of cyclic softening and cyclic creep in low carbon steel,” Master. Sci. Eng., Vol. 93, 1987, pp159-174.
[5]W. D. Callister, Material Science and Engineering: An Introduction, third edition, New York, 1994.
[6] D.P. Koistinen and R.E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,”Acta Metallurgica, 1959 Vol.7(1): p.p. 59-60.
[7] A.d.S. Rocha , R. M. Nunes, , and T. Hirsch, “Analysis by design of experiments of distortion potentials in drawn and induction hardened wire,” Materials Research, 2012. 15(2): p.p.266-276.
[8] R.W.K. Honeycombe, and H.K.D.H. Bhadeshia, , Steels: microstructure and properties. 1981: E. Arnold.
[9] N.S. Rossini , M. Dassisti , K.Y. Benyounis , and A.G. Olabi , “Methods of measuring residual stresses in components,” Materials & Design, 2012. 35(0): p.p.572-588.
[10]O.N. Mohanty, “On the Stabilization of Retained Austenite:mechanism and kinetic,” Materials Science and Engineering B32(1995)267-278
[11] Fucheng Zhang, Tingquan Lei, “A Study of Friction-Induced Martensite Transformation for Austenite Manganese Steel,” Wear 212(1997)195-198
[12]M.S. Blanter, “Strain-induced interaction of dissolved atoms in γ-Fe,” Journal of Alloys and Compounds 291(1999)167-174.
[13]A Mijovich, A. GoncalvesVieira, R. Paniago, H.D. Pfannes, B. Mendonca Gonzzalez, “Mossbauer study of the retained austenite phase in multiphase steels,” Materials Science and Engineering A283(2000)65-69
[14] Y.D. Wang , R. Lin Peng , X.L. Wang , and R.L. McGreevy , “Grain-orientation-dependent residual stress and the effect of annealing in cold-rolled stainless steel,” Acta Materialia, 2002. 50(7): p.p.1717-1734.
[15] R.C. Dommarco, K.J. Kozaczek , P.C. Bastias, G.T. Hahn , and C.A. Rubin , “Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading,” Wear, 2004. 257(11): p.p.1081-1088.
[16] H. Holzapfel, V. Schulze, O. Vöhringer , and E. Macherauch, “Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures,” Materials Science and Engineering: A, 1998. 248(1–2): p.p.9-18.
[17] A. Wick, V. Schulze , and O. Vöhringer, “Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel,” Materials Science and Engineering: A, 2000. 293(1–2): p.p.191-197.
[18] M.X. Zhang, P.M. Kelly, L.K. Bekessy, and J.D. Gates, “Determination of retained austenite using an X-ray texture goniometer,” Materials Characterization, 2000. 45(1): p.p.39-49.
[19] A. Bensely, S. Venkatesh, D. Mohan Lal , G.Nagarajan , A. Rajadurai , and K. Junik , “Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel,” Materials Science and Engineering: A, 2008. 479(1–2): p.p.229-235.
[20] Osman Asi , Ahmet Çetin Can , James Pineault , Mohammed Belassel, “ The relationship between case depth and bending fatigue strength of gas carburized SAE 8620 steel,” Surface and Coatings Technology, Volume 201, Issue 12, 5 March 2007, Pages 5979-5987.
[21] Osman Asi , Ahmet Çetin Can , James Pineault , Mohammed Belassel, “The effect of high temperature gas carburizing on bending fatigue strength of SAE 8620 steel,” Materials & Design, Volume 30, Issue 5, May 2009, Pages 1792-1797.
[22] D.O. Northwood, L. He, E. Boyle ,and R. Bowers, , “Retained Austenite - Residual Stress - Distortion Relationships in Carburized SAE 6820 Steel,” Materials Science Forum, 2007. 539-543: p.p.4464-4469.
[23] Materials, A.S.f.T.a., Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. 2013, American Society for Testing and Materials.
[24] B.D. Cullity, and S.R. Stock , Elements of x-ray diffraction. 2001: Prentice Hall.
[25] S. He , A. Van Bael, S.Y. Li , P. Van Houtte, F. Mei , and A. Sarban , “Residual stress determination in cold drawn steel wire by FEM simulation and X-ray diffraction,” Materials Science and Engineering: A, 2003. 346(1–2): p.p.101-107.
[26] J. Johansson , M. Odén, , and X.H. Zeng , “Evolution of the residual stress state in a duplex stainless steel during loading,” Acta Materialia, 1999. 47(9): p.p.2669-2684.
[27] Materials, A.S.f.T.a., “Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels,” 2012, American Society for Testing and Materials.
[28] Y. Ohmori, and I. Tamura , “Epsilon carbide precipitation during tempering of plain carbon martensite,” Metallurgical and Materials Transactions A, 1992. 23(10): p.p.2737-2751.
[29] S. Matas, and R.F. Hehemann , “ Retained Austenite and the Tempering of Martensite,” Nature, 1960. 187(4738): p.p.685-686.
[30] S. Magner, “A historical review of retained austenite and its measurement by x-ray diffraction,” JCPDS, 2002. 45: p.p.92-97.
[31] D.P. Koistinen, and R.E. Marburger , “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metallurgica, 1959. 7(1): p.p.59-60.
[32] C.F. Jatczak, and S.o.A. Engineers , “Retained austenite and its measurement by X-ray diffraction,” 1980: Society of Automotive Engineers.
[33] A. Tenuta Azevedo, and E. Galvão da Silva , “Mössbauer study of retained austenite in a low c low alloy steel,” Scripta Metallurgica, 1978. 12(2): p.p.113-117.
[34] R. Colaço, and R. Vilar , “Stabilisation of retained austenite in laser surface melted tool steels,” Materials Science and Engineering A, 2004. 385(1-2): p.p.123-127.
[35] N. Luzginova, , L. Zhao , and J. Sietsma, , “Evolution and thermal stability of retained austenite in SAE 52100 bainitic steel,” Materials Science and Engineering: A, 2007. 448(1-2): p.p.104-110.
[36] N. Van Dijk , A. Butt , L. Zhao, J. Sietsma, S.Offerman , J. Wright , and S. Van Der Zwaag , “Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling,” Acta Materialia, 2005. 53(20): p.p.5439-5447.
[37] ASTM, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation. 2003: ASTM International.
[38] C. Wang , J. Shi , W. Cao , and H. Dong , “Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel,” Materials Science and Engineering: A, 2010. 527(15): p.p.3442-3449.
[39] A. Kammouni , W. Saikaly , M. Dumont , C. Marteau , X. Bano , and A. Charaï , “A methodology suitable for TEM local measurements of carbon concentration in retained austenite,” Materials Characterization, 2008. 59(9): p.p.1307-1311.
[40] W. Shi , L. Li , B.C. De Cooman , P. Wollants , and C.-x. Yang , “Thermal Stability of Retained Austenite in TRIP Steel After Different Treatments,” Journal of Iron and Steel Research, International, 2008. 15(1): p.p.61-64.
[41] M.M. Serna and J.L. Rossi, “MC complex carbide in AISI M2 high speed steel,”Maqterials Letters, 2009. Vol. 63(8):p.p. 691-693.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top