跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳贊安
研究生(外文):Tzan-an Chen
論文名稱:以化學溶液旋鍍法製備Cu2ZnSnSe4系薄膜及其特性之研究
論文名稱(外文):The studies of characterization of Cu2ZnSnSe4 thin film by spin-coating technique
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
口試委員:胡毅
口試委員(外文):Yi Hu
口試日期:2015-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:太陽能電池旋鍍法
外文關鍵詞:Cu2ZnSnSe4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以化學溶液旋鍍製作硒化銅錫鋅(Cu2ZnSnSe4,CZTSe)薄膜太陽能電池吸收層,針對不同的製程條件下,探討所形成的薄膜結構及其光學特性。以硝酸銅、硝酸鋅、氯化錫、四氯化硒,四種粉末製成溶液,再以旋轉塗佈(Spin-Coating)的方式塗布在矽晶片上,接著在不同溫度下做熱處理製成薄膜。由X光繞射儀與拉曼光譜儀可知,薄膜結構以Cu2ZnSnSe4結晶相為主,由UV-vis吸收光譜儀量測後之結果,經計算後可知,薄膜之光吸收係數皆大於104 cm-1,光直接能隙約為1.5eV。
The study is based on the production of a chemical solution spin coating copper-tin zinc selenide (Cu2ZnSnSe4, CZTSe) thin film solar cell absorber layer for different process conditions , to explore the structure and optical properties of the film formed . Copper nitrate , zinc nitrate , stannic chloride , selenium tetrachloride , four powder to prepare a solution , then spin coating (Spin-Coating) coated on a silicon chip manner , followed by heat treatment at different temperatures do made film. Raman spectroscopy and X -ray diffraction instrument can be seen from the film structure Cu2ZnSnSe4 main crystalline phase , after the results of the spectrometer measurements of the UV-vis absorption, calculated after the shows , the optical absorption coefficient of the film are more than 104 cm-1, light direct energy gap of about 1.5eV.
摘要 II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1 太陽能電池簡介 3
2.1.1太陽能電池原理 3
2.1.2 太陽能電池種類 5
2.2 化合物半導體太陽能電池 6
2.2.1 化合物半導體太陽能電池結構 7
2.2.2 III-V族太陽能電池 9
2.2.3 I-III-VI族太陽能電池 10
2.3 CZTS系太陽能電池 11
2.3.1 CZTS系化合物材料特性 11
2.3.2 CZTS系太陽能電池的發展 14
2.4 CZTS系太陽能電池製備方法 15
2.4.1 旋轉塗佈法(spin-coating) 15
2.4.2 噴塗法(spray-coating) 15
2.4.3 網印法(screen printing) 16
2.4.4 電化學沉積法(electrochemical deposition) 16
2.4.5 濺鍍法(sputtering) 16
2.4.6 雷射脈衝沉積法(pulsed laser deposition,PLD) 17
2.5 太陽能電池應用 17
第三章 實驗步驟 18
3.1 實驗藥品 18
3.2 薄膜製備 19
3.2.1 基材前處理 19
3.2.2 化學溶液製備 19
3.2.3 CZTSe薄膜製備 19
3.3 實驗分析 21
第四章 結果與討論 23
4.1 Cu2ZnxSn2-xSe4之薄膜及其特性研究 23
4.1.1 薄膜結構分析 23
4.1.2 離子價態分析 28
4.1.3 薄膜表面形貌分析 32
4.1.4 薄膜光學能隙分析 37
4.2 摻雜鈉離子之Cu2-y(Nay)ZnSnSe4薄膜及其特性研究 44
4.2.1 薄膜結構分析 44
4.2.2 離子價態分析 48
4.2.3 薄膜表面形貌分析 50
4.2.4 薄膜光學能隙分析 54
第五章 結論 60
參考文獻 62
1.Jackson, P., et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): p. 894-897.
2.Persson, C., Electronic and optical properties of Cu[sub 2]ZnSnS[sub 4] and Cu[sub 2]ZnSnSe[sub 4]. Journal of Applied Physics, 2010. 107(5): p. 053710.
3.Strümpel, C., et al., Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Solar Energy Materials and Solar Cells, 2007. 91(4): p. 238-249.
4.Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
5.Peter Bermel, et al., Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Optical Society of America, 2007.
6.Kaelin, M., D. Rudmann, and A.N. Tiwari, Low cost processing of CIGS thin film solar cells. Solar Energy, 2004. 77(6): p. 749-756.
7.Zhou, H., et al., Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. J Am Chem Soc, 2013. 135(43): p. 15998-6001.
8.Tiong, V.T., J. Bell, and H. Wang, One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - a hydrothermal approach. Beilstein J Nanotechnol, 2014. 5: p. 438-46.
9.Tiwari, A.N., et al., CdTe solar cell in a novel configuration. Progress in Photovoltaics: Research and Applications, 2004. 12(1): p. 33-38.
10.Wang, Z.-S., et al., Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1381-1389.
11.Im, J.H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-93.
12.Kyaw, A.K.K., et al., An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO[sub 3] hole selective layer. Applied Physics Letters, 2008. 93(22): p. 221107.
13.Ashrafi, A.B.M.A., et al., Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Applied Physics Letters, 2000. 76(5): p. 550.
14.Ashrafi, A.A., et al., Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic molecular-beam epitaxy. Journal of Crystal Growth, 2000. 221(1-4): p. 435-439.
15.Barkhouse, D.A.R., et al., Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3. Applied Physics Letters, 2012. 100(19): p. 193904.
16.Rumberg, A., et al., ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells. Thin Solid Films, 2000. 361-362: p. 172-176.
17.Romeo, A., et al., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(23): p. 93-111.
18.Rostan, P.J., et al., Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells and tandem structures. Thin Solid Films, 2005. 480-481: p. 67-70.
19.林明獻, 太陽電池技術入門. 全華圖書, 2008.
20.Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications, 2015. 23(1): p. 1-9.
21.Suryawanshi, M.P., et al., CZTS based thin film solar cells: a status review. Materials Technology, 2013. 28(1/2): p. 98-109.
22.Jiang, M. and X. Y, Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects. 2013.
23.Hironori Katagiri, et al., Preparation films by and evaluation of Cu2ZnSnS4 thin sulfurization of E-B evaporated precursors. Solar Energy Materials and Solar Cells, 1997: p. 407 - 414.
24.Liu, Y., et al., Preparation of Cu(In,Ga)Se2 Thin Film by Solvothermal and Spin-coating Process. Energy Procedia, 2012. 16: p. 217-222.
25.Yeh, M.Y., C.C. Lee, and D.S. Wuu, Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009. 52(1): p. 65-68.
26.Liu, Y., et al., Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization. Journal of Materials Science: Materials in Electronics, 2012. 24(2): p. 529-535.
27.Shinde, N.M., R.J. Deokate, and C.D. Lokhande, Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films. Journal of Analytical and Applied Pyrolysis, 2013. 100: p. 12-16.
28.Patel, M., I. Mukhopadhyay, and A. Ray, Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. Journal of Physics D: Applied Physics, 2012. 45(44): p. 445103.
29.Espindola-Rodriguez, M., et al., Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis. Thin Solid Films, 2013. 535: p. 67-72.
30.Zhou, Z., et al., Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2042-2045.
31.Nomura, T., T. Maeda, and T. Wada, Fabrication of Cu2SnS3solar cells by screen-printing and high-pressure sintering process. Japanese Journal of Applied Physics, 2014. 53(5S1): p. 05FW01.
32.Zhang, X., et al., Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material. Applied Physics A, 2008. 94(2): p. 381-386.
33.Pawar, B.S., et al., Effect of Annealing Atmosphere on the Properties of Electrochemically Deposited Cu2ZnSnS4(CZTS) Thin Films. ISRN Renewable Energy, 2011. 2011: p. 1-5.
34.Pawar, S.M., et al., Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010. 55(12): p. 4057-4061.
35.Katagiri, H., et al., Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express, 2008. 1: p. 041201.
36.Emrani, A., P. Vasekar, and C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances. Solar Energy, 2013. 98: p. 335-340.
37.Dhakal, T.P., et al., Characterization of a CZTS thin film solar cell grown by sputtering method. Solar Energy, 2014. 100: p. 23-30.
38.Pawar, S.M., et al., Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films. Current Applied Physics, 2010. 10(2): p. 565-569.
39.Vanalakar, S.A., et al., A review on pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds, 2015. 619: p. 109-121.
40.Moholkar, A.V., et al., Development of CZTS thin films solar cells by pulsed laser deposition: Influence of pulse repetition rate. Solar Energy, 2011. 85(7): p. 1354-1363.
41.Grossberg, M., et al., Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications. Thin Solid Films, 2011. 519(21): p. 7403-7406.
42.Ganchev, M., et al., Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy. Thin Solid Films, 2011. 519(21): p. 7394-7398.
43.Meng, M., et al., Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu–Zn–Sn–Se precursors. Applied Surface Science, 2013. 273: p. 613-616.
44.Su, S.-H., et al., Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Frontiers in Energy Research, 2014. 2.
45.Pathan, H.M., et al., Modified chemical deposition and physico-chemical properties of copper(I) selenide thin films. Applied Surface Science, 2003. 211(1-4): p. 48-56.
46.Chen, W., et al., Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis. CrystEngComm, 2014. 16(6): p. 1201.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top