跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳泰緯
研究生(外文):Tai-Wei Wu
論文名稱:熱處理對磷酸鋅皮膜披覆碳鋼微觀結構之影響
論文名稱(外文):Heat treatment effect on the microstructures of zinc phosphate coated steels
指導教授:邱六合
指導教授(外文):Liu-ho Chiu
口試委員:邱六合
口試委員(外文):Liu-ho Chiu
口試日期:2015-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:67
中文關鍵詞:沃斯田體化磷酸鹽皮膜處理碳鋼碳勢氣氛相變化
外文關鍵詞:carbon steelcarbon potentialphosphate coatingphase transformationaustenitizing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討淬火熱處理對磷酸鹽皮膜處理S50C及SK5兩種碳鋼之表面結構變化影響,以碳勢為0.4~0.8%保護性氣氛,進行溫度由820~930℃沃斯田體化10、30及60分鐘後淬火並以200℃回火處理1小時;並以400~650℃進行回火1~4小時,探討其表層變化。S50C及SK5進行磷酸鋅皮膜處理,所得表層為磷酸鋅(Hopeite (Zn3(PO4)2·4H2O))及磷酸鋅鐵(Phosphophyllite (FeZn2(PO4)2·4H2O))組成之皮膜。進行碳勢0.6%之淬火回火熱處理S50C試片表層,發現明顯灰白兩層磷鐵氧化物,鐵含量差異導致顏色差異,相同情況在S50C碳勢0.8%及SK5碳勢0.6%及0.8%皆有發現,但較不明顯。S50C在碳勢0.4%氣氛持溫淬火,表層得到硬度約230HV之富磷肥粒體(α-Fe),基底為600HV之麻田散體之組合。回火使富磷肥粒體中磷元素解離,在400℃回火試片表層可找到磷化三鐵(Fe3P),但在 600℃時除氧化鐵外,肥粒體反而少許存在。
The quenching and tempering treatment of phosphate coated S50C and SK5 carbon steel have been studied in the different carbon potential atmosphere to investigate the phase transformation of phosphate coating in the steel surface. Zinc phosphate coated S50C and SK5 steel specimens were analyzed to obtain that zinc phosphate (Hopeite (Zn3(PO4)2·4H2O)) and zinc iron phosphate (Phosphophyllite (FeZn2(PO4)2·4H2O)) were existed in the surface layer. S50C specimens were austenitized at 860℃ for 55 min in carbon potential of 0.4, and SK5 specimens were austenitized 820℃ for 25 min in carbon potential of 0.8, and quenched into oil. Both S50C and SK5 quenched specimens were tempered at the range of 400~600℃ for 1~4 hours. The results show that the surface layer of S50C quenched in 0.6 carbon potential, and tempered specimens show obvious gray iron phosphate oxides. The same situation for S50C specimens quenched in 0.8 carbon potential and SK5 specimens were also quenched in 0.6, 0.8 carbon potential were found, but less obvious. S50C specimens quenched in 0.4 carbon potential were obtained a surface hardness about 230HV for the phosphorus-rich ferrite (α-Fe) and the base hardness is about 600HV for the martensite. Tempering make phosphorus-rich ferrite dissociation, iron phosphide (Fe3P) and ferrite were found on the specimen surface at 400℃ tempering, but phosphorus-rich ferrite can preserve at 600℃ tempering due to two-phase zone.
中文摘要I
英文摘要 II
目錄IV
圖目錄VII
表目錄XII
第一章 前言1
第二章 文獻回顧3
2.1 熱處理3
2.1.1 淬火3
2.1.2 回火3
2.1.3 滲碳5
2.1.3.1 氣體滲碳6
2.1.3.2 滲碳氣體7
2.1.3.3 滲碳反應與硬化機制9
2.2 磷酸鹽皮膜10
2.2.1 磷酸鹽皮膜處理之程序11
2.2.1.1 清潔(脫脂)11
2.2.2.2 表面改質11
2.2.3.3 磷化12
2.2.2.4 後處理15
2.2. 磷酸鹽皮膜之比較16
第三章 實驗方法及步驟17
3.1 試片製備17
3.2 實驗流程與參數18
3.2.1 磷酸鹽皮膜19
3.2.2 氣體滲碳19
3.2.3 回火熱處理21
3.3 試片分析23
3.3.1 微觀組織觀察23
3.2.2 X-ray繞射分析23
3.2.3 電子探測分析儀(EPMA)觀察23
第四章 結果與討論24
4.1 磷酸鹽皮膜觀察24
4.1.1 微觀組織觀察24
4.1.2 X-ray繞射分析25
4.1.3 EPMA分析26
4.2 熱處理對磷酸鹽皮膜之影響28
4.2.1 磷酸鹽皮膜處理碳鋼28
4.2.1.1 在不同碳勢保護性氣氛下之微觀組織觀察28
4.2.1.2 EPMA分析36
4.2.1 除磷磷酸鹽皮膜處理碳鋼37
4.2.1.1 除磷之微觀組織觀察37
4.2.1.2 在不同碳勢保護性氣氛下之組織觀察39
4.3 回火熱處理之影響47
4.3.1 微觀組織觀察47
4.3.2 X-ray繞射分析56
4.3.3 SEM-mapping分析57
4.3.4 EPMA分析60
第五章 結論62
參考文獻64
[1]S. Jegannathan, “Formation of zinc phosphate coating by anodic electrochemical treatment,” Surface & Coatings Technology, 2006, pp.6014-6021.
[2]D. B. Freeman, “Phosphating and Metal Pretreatment — A Guide to Modern Processes and Practice,” Industrial Press Inc., New York, 1986.
[3]W. Rausch, “The Phosphating of Metals,” Finishing Publications Ltd., London, 1990.
[4]G. Lorin, “Phosphating of Metals,” Finishing Publications Ltd., London, 1974.
[5]C. Rajagopal, K.I. Vasu, “Conversion Coatings: A Reference for Phosphating, Chromating and Anodizing,” Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2000.
[6]M. Arentoft, N. Bay, P. T. Tang, J. D. Jensen, “A new lubricant carrier for metal forming,” CIRP Annals - Manufacturing Technology, Vol.58, 2009, pp.243-246.
[7]P. pokorny, P. Szelag, M. Novak, L. Mastny, V. Brozek, “Thermal stability of phosphate coatings on steel,” Metalurgija, Vol.54, 2015, pp.489-492.
[8]Yasar Totik, “The corrosion behaviour of manganese phosphate coatings applied to AISI 4140 steel subjected to different heat treatments,” Surface & Coatings Technology, Vol.200, 2006, pp.2711-2717.
[9]N. Bay, “The State of the art in cold forging lubrication,” Journal of Materials Processing Technology , Vol.46, October 1994, pp.19-40.
[10]Feng Wang, “Relationship between the Crystallographic Structure of Electrodeposited Fe–P Alloy Film and its Thermal Equilibrium Phase Diagram,” Materials Transactions, Vol. 44, No. 1, 2003, p.127.
[11]賴耿陽,熱處理的基礎(II),復漢出版社,1976年8月。
[12]ASM Handbook, “Heat treating,” The Materials Information Company, vol. 4, 1998.
[13]M. F. Carlson and B. V. Narasimha, G. Thomas, “The effect of austenitizing temperature upon the microstructure and mechanical properties of experimental Fe/Cr/C Steel,” Metall . Trans. Vol. 10A(9), 1979, pp.1273-1281.
[14]M. F. Chai, C. Laird, “Mechanisms of cyclic softening and cyclic creep in low carbon steel,” Mater. Sci. Eng., Vol. 93, 1987 , pp.159-174.
[15]W. D. Callister, “Materical Science and Engineering: An Introduction,” third edition, Wiley, New York, 1994.
[16]D. H. Huang and G. Thomas, “Structure and mechanical properties of tempered martensite and lower bainite in Fe-Ni-Mn-C Steels,” Metallurgical Transactions A, Vol. 2, 1971, pp.1587-1598.
[17]C. L. Briant and S. K. Banerji, “Tempered martensite embrittlement in phosphorus doped steels,” Materials and Metallurgical Transactions A, Vol.10, 1979, pp.1729-1737.
[18]H. Kwon, J. C. Cha, C. H. Kim, “The effect of grain size on fracture behavior in tempered martensite embrritlement for AISI 4340 steel,” Materials Science Engineering, Vol.100, 1988, pp.121-128.
[19]Y. Tomita, “Improved fracture toughness of ultrahigh strength steel through control of non-metallic inclusions,” Journal of Material Science, Vol. 28, 1993, pp.853-859.
[20]R. M. Horn and R. O. Ritchi, “Mechanisms of tempered martensite embrritlement in low alloy steel,” Materials and Metallurgical Transactions A, Vol.9, 1978, pp.1039-1047.
[21]K. E. Thelning, “Steel and its heat treatment,” second edition, 2013, p.26.
[22]陳繁雄,吸熱型爐氣滲碳熱處理,金屬熱處理,第44期,1995。
[23]M. F. Carlson and B.V. Narasimha, G. Thomas, “The effect of austenitizing temperature upon the microstructure and mechanical properties of experimental Fe/Cr/C steel,” Materials and Metallurgical Transactions A, Vol.10, 1979, pp.1273-1281.
[24]M. F. Chai and C. Laird, “Mechanisms of cyclic softening and cyclic creep in low carbon steel,” Materials Science Engineering, Vol. 93, 1987, pp.159-174.
[25]W. D. Callister, “Material Science and Engineering: An Introduction, third edition,” New York, 1994.
[26]K.E. Thelning, “Steel and its heat treatment,” second edition, 2013, pp.42-46.
[27]廖漢智,化成溫度及外加電位對磷酸錳皮膜性質之影響研究,碩士論文,2005。
[28]D. B. Freeman “Phosphating and Metal Pre-treatment a guide to modern processes and practice,” Woodhead-Faulkner Ltd, 1986
[29]Werner Rausch “The Phosphating of Metals,” Finishing Publications LTD, 1990.
[30]Thomas W. Cape, Metals Handbook, ASM, International, Materials Park, Ohio, Vol. 13, 1987, p.383.
[31]Kevin Ogle, Michael Wolpers, “Phosphating conversion coatings,” ASM Handbook, vol. 13A.
[32]L. Y. Niu, Z. H. Jiang, G. Y. Li, C. D. Gu, J. S. Lian, “A study and application of zinc phosphate coating on AZ91D magnesium alloy,” Surface & Coatings Technology, Vol.200, 2006, pp.3021–3026.
[33]Bohlsen F., Kern M., “Clinical outcome of glass-fiber-reinforced crowns and fixed partial dentures: A three-year retrospective study,” Quintessence Int. Vol.34, 2003, pp.493-496.
[34]R. S. Squier, J. R. Agar, J. P. Duncan, T. D. Taylor, “Retentiveness of dental cements used with metallic implant components,” Int. J. Oral Maxillofacial Implants, Vol.16, 2001, pp.793-798.
[35]A. D. Milutinovic-Nikolic, V. B. Medic, Z. M. Vukovic, “Porosity of different dental luting cements,” Dental Materials, Vol.23, 2007, pp.674-678.
[36]R. M. Day, A. R. Boccaccini, “Effect of particulate bioactive glasses on human macrophages and monocytes in vitro,” Journal of Biomedical Materials Research Part A, Vol.73A, 2005, pp.73-79.
[37]O. Pawlig and R. Trettin, “In-Situ DRIFT Spectroscopic Investigation on the Chemical Evolution of Zinc Phosphate Acid−Base Cement,” Chem. Mater., Vol.12, 2000, pp.1279-1287.
[38]N. Bay, “The state of the art in cold forging lubrication,” Journal of Materials Processing Technology, Vol.46, 1994, pp.19-40.
[39]Mark Gariety, “Evaluation of new cold forging lubricants without zinc phosphate precoat,” International Journal of Machine Tools & Manufacture, Vol.47, 2007, pp.673-681.
[40]P. E. Tegehall and N. G. Vannerberg “Nucleation and formation of zinc phosphate conversion coating on cold-rolled steel,” Corrosion Science , Vol.32, 1991, pp.635-652.
[41]Y. Arnaud, E. Sahakian, M. Romand, “Study of hopeite coatings: I. Pure hopeite thermal dehydration: dihydrate, Zn3(PO4)2·2H2O, structure conformation,” Applied Surface Science, Vol.32, 1988, pp.281-295.
[42]S. Maeda, “Surface characteristics that control the phosphatability of cold-rolled steel sheet,” Coating technology, Vol.55, 1983, pp.43-52.
[43]P. E. Tegehall, “The mechanism of chemical activation with titanium phosphate colloids in the formation of zinc phosphate conversion coatings,” Corrosion Science , Vol.49, 1990, pp.373-383.
[44]N. Satoh, T. Minami, “Relationship between the formation of zinc phosphate crystals and their electrochemical properties,” Surface coating technology, Vol.34, 1988, pp.331-343.
[45]W. H. Kok, X. Sun, L. Shi, “Formation of zinc phosphate coatings on AA6061 aluminum alloy,” Journal of materials science, Vol.36 ,2001, pp.3941-3946.
[46]L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, S. aximovitch “Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films,” Surface & Coatings Technology, Vol.185, 2004, pp.58-67.
[47]L. Kouisni, M. Azzi, F. Dalard, S. aximovitch “Phosphate coatings on magnesium alloy AM60 part 2: Electrochemical behaivour in borate buffer solution,” Surface & Coatings Technology, Vol.192, 2005, pp.239-246.
[48]Guangyu Li, Liyuan Niu, Jianshe Lian, Zhonghao Jiang, “A black phosphate coating for C1008 steel,” Surface and Coatings Technology, Vol.176, 2004, pp.215-221.
[49]G. Y. Li, L. Y. Niu, Z. H. Jiang, Q. Jiang, “Growth of zinc phosphate coatings on AZ91D magnesium alloy,” Surface & Coatings Technology, Vol.201, 2006, pp.1814-1820.
[50]A. Losch, J. W. Schutze , H. D. Speckmann, Metalloberfläche, Vol.46, 1992, p.133.
[51]D. Weng, P. Jokiel, A.Uebleis, H. Boehni, “Corrosion and protection characteristics of zinc and manganese phosphate coatings,” Surface and Coatings Technology, Vol.88, 1996, pp. 147-156.
[52]A. Uebleis, D. Weng, H. Boehni, “Proceedings of the First Swiss Conference on Materials Research for Engineering Systems,” Sion, 1994, p.316.
[53]Hugh Baker, “Alloy Phase Diagrams,” ASM Handbook, Vol.3, 1992, P.2‧204.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top