跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王彥茹
研究生(外文):Yen-ju Wang
論文名稱:電化學處理對碳纖維性質之影響
論文名稱(外文):The influence of electrochemical treatments on the properties of carbon fibers
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-shyong Tzeng
口試委員:曾信雄
口試委員(外文):Shinn-shyong Tzeng
口試日期:2015-07-08
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:125
中文關鍵詞:碳纖維1電化學處理2單纖拉伸3
外文關鍵詞:electrochemical treatments2single fiber tensile strength3carbon fiber1
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以不同界面活性劑(NaDDBS、SDS)並施加不同電壓下,對碳纖維布進行電化學處理,探討以界面活性劑進行電化學處理對碳纖維性質之影響。實驗結果發現,電化學處理在較低的電壓(5V)下對碳纖維有類似退漿處理之效果。本研究另外探討退漿處理對碳纖維之影響,並使用TAIRYFIL TC33與TORAY T700兩種PAN系碳纖維研究退漿處理對碳纖維之影響。由掃描式電子顯微鏡發現此兩款不同製程之碳纖維表面形貌有很大的差異,TC33碳纖維的表面有許多溝槽,在退漿處理後,溝槽深度變得更深且明顯,易導致成為拉伸試驗時之破壞缺陷,使得其強度大幅下降;T700SC碳纖維之表面並無明顯溝槽及缺陷,上漿處理對表面平滑之碳纖維強化效果較不明顯。故sizing能有效填補纖維表面的缺陷,纖維破壞時能抑制缺陷從表面成長,並且有效提升碳纖維的強度。
在NaDDBS、SDS溶液中進行電化學處理實驗結果顯示,其會使碳纖維表面被氧化,而電壓過高(15V)會導致纖維有被氧化蝕刻之現象。而在NaDDBS、SDS溶液中施加30V電壓,則發現碳纖維直徑有被細化之現象,其直徑比原始未處理之纖維縮小了7~10%,此與碳纖維表面處理技術中,電化學陽極處理現象類似。纖維表面會因氧化蝕刻使表面的結構被去除,電壓的施加也使碳纖維內部 的石墨結構排列變好,使ID/IG值降低,因此電化學處理後,單纖拉伸強度有明顯的降低,但模數平均提升了10~18%,而電阻率降0.5~10%。另外,本實驗發現在去離子水中施加30V電壓進行電化學處理,纖維表面並無氧化蝕刻之現象,但電壓的施加使纖維內部之石墨結構排列變好,ID/IG值下降,電阻率下降了7.6%,拉伸模數提高了14.3%。
This thesis studies the influence of electrochemical treatments on the properties of carbon fiber (CF) using different surfactants(NaDDBS or SDS) and under different voltages. The results showed that after the electrochemical treatments at lower voltage(5V), CFs exhibited clearer surface striations similer to that after desizing. Further investigation about the influence of desizing on two kinds of PAN-based CFs (TAIRYFIL TC33 and TORAY T700) with different morphology was performed. TC33 CFs have a kidney-shaped cross-section and striations on the fiber surface can be observed. On the other hand, T700 CFs show a smooth surface and a circular cross-section. After desizing, the single fiber tensile strength of TC33 CFs decreased due to the surface defects resulting from the striations. However, no obvious variation on tensile strength can be measured for T700 CFs because of the smooth surface.
XPS results indicated that the surface of CFs was oxidized after the electrochemical treatments using NaDDBS or SDS aqueous solution. At a higher voltage (15V), etching on CF surfaces was observed, and fiber thinning was found at a voltage of 30V for both NaDDBS and SDS solutions. A 7~10% decrease of fiber diameter was measured. Raman analyses showed a decrease of ID/IG value, which is attributed to the better alignment of graphene layers due to the applied voltage as will as the removal of surface structure due to the electrochemical etching. Consequently, despite of the obvious decrease of fiber strength after electrochemical treatments, a 10~18% increase of fiber modulus and a 0.5~10% increase of fiber resistivity were found. Furthermore, an electrochemical treatment at 30V under DI water was found to reduce the ID/IG value, raise the modulus by 14.3%, and decrease the resistivity by 7.6%.
摘要I
AbstractIII
主目錄 V
表目錄 VIII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 3
2.1 碳纖維 3
2.1.1 簡介 3
2.1.2 碳纖維之分類 4
2.1.3 聚丙烯腈系碳纖維之製程異 9
2.2 碳纖維表面處理技術 11
2.2.1 碳纖維用上漿劑 11
2.2.2 電化學陽極氧化法 11
2.3 電泳沉積法(Electrophoretic deposition, EPD) 14
2.3.1 電泳沉積法之應用與研究 14
2.4 界面活性劑 17
2.4.1 十二烷基硫酸鈉(SDS) 17
2.4.2 十二烷基苯磺酸鈉(NaDDBS) 19
第三章 實驗 20
3.1 實驗材料 20
3.2 實驗方法 20
3.2.1 退漿處理 20
3.2.2 電化學處理 21
3.3 量測分析 28
3.3.1 纖維直徑之量測 28
3.3.2 拉伸測試 29
3.3.3 導電性測試 29
3.3.4 原子力顯微鏡(AFM) 30
3.3.5 熱重分析儀(TGA) 31
3.3.6 冷場發射式電子顯微鏡(FE-SEM) 31
3.3.7 X射線光電子能譜儀(XPS) 31
3.3.8 拉曼光譜儀(Raman Spectroscopy) 32
第四章 結果與討論 33
4.1 退漿處理對碳纖維的影響 33
4.1.1 退漿處理之單纖拉伸試驗 33
4.1.2 退漿處理之韋伯分布 36
4.1.3 退漿處理之纖維表面形貌 41
4.1.4 退漿處理之電性測試 43
4.2 電化學處理對碳纖維之影響 45
4.2.1 電化學處理之電流與溫度變化 50
4.2.2 電化學處理之碳纖維機械性質 54
4.2.2.1 碳纖維單纖拉伸試驗 54
4.2.2.2 韋伯分布 58
4.2.3 電化學處理後碳纖維表面形貌變化 63
4.2.3.1 碳纖維表面溝槽形貌之改變 78
4.2.3.2 碳纖維之表面粗糙度 81
4.2.4 碳纖維之熱重分析 85
4.2.5 電化學處理對碳纖維表面的氧化作用 88
4.2.6 電化學處理後碳纖維結構對電性之影響 93
4.2.6.1 電性測試 93
4.2.6.2 拉曼光譜分析 95
4.2.7 電化學處理對碳纖維結構之影響 100
第五章 結論 102
參考文獻 104
[1]Mun G. S., Kensuke S.,Tetsuya T. Application of a high magnetic field in the carbonization process to increase the strength of carbon fibers. Carbon 2002;40: 2013-2020.
[2]Nursel D.,Wightman J. Surface analysis of unsized and sized carbon fibers. Carbon 1999;37: 1105-1114.
[3]Servinis L.,Henderson L. Surface functionalization of unsized carbon fiber using nitrenes derived from organic azides. Carbon 2013;54: 378-388.
[4]Liu J., Tian Y.,Chen Y. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Materials Chemistry and Physics 2010;122: 548-555.
[5]Liu J., Tian Y., Chen Y.,Liang J. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4•H2O aqueous compound solution. Applied Surface Science 2010;256: 6199-6204.
[6]Zhou G., Byun J.,Wang Y. Mechanism of sonication assisted electrophoretic deposition of carbon nano-fiber on carbon fabrics Composites Science and Technology 2015;107: 29-35.
[7]Guo J., Lu C., An F.,He S. Preparation and characterization of carbon nanotubes/carbon fiber hybrid material by ultrasonically assisted electrophoretic deposition. Materials Letters 2012;66: 382-384.
[8]Islam M. F.,Rojas E. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. NANO LETTERS 2003;3: 269-273.
[9]程鼎華,以電泳沉積法奈米碳管對纖維/環氧樹脂複合材料機械性質之影響,2014,大同大學。
[10]沈曾民,新型碳材料,2003,曉園出版社。
[11]稻垣道夫,大谷杉郎,大谷朝男,碳材料碳纖維工學,1994,復漢出版社。
[12]Ridds J. Encyclopedia of Polymer Science and Engineering. Wiley,New York 1985;640.
[13]Zimmer J. E.,White J. Disclination structurs in the carbonaceous mesophase. In Advances in Liquid Crystals 1982;5: 157.
[14]賴耿陽,碳材料科學與工學,1991,復漢出版社。
[15]Liu J., Ge H.,Wang C. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate,. Appl. Polym. Sci. 2006;103: 3723-3729.
[16]Chen J.,Wang C. Effect of coagulation temperature on the properties of poly(acrylonitrile–itaconic acid) fibers in wet spinning,. J. Polym. Res. 2007;14: 223-228.
[17]Bajaj P.,Sreekumar T. Structure development during dry–jet–wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Appl. Polym. Sci. 2002;86: 773-787.
[18]Sobhanipoura P.,Cheraghib R. Thermoporometry study of coagulation bath temperature effect on polyacrylonitrile fibers morphology. Thermochimica Acta 2011;518: 101-106.
[19]Miguel A.,Montes M. n. Raman spectroscopy study of HM carbon fibres: effect of plasma treatment on the interfacial properties of single fibre/epoxy composites. Carbon 2002;40: 845-855.
[20]Zhang S., Liu W.,Hao L. Preparation of carbon nanotube/carbon fiber hybrid fiber by combining electrophoretic deposition and sizing process for enhancing interfacial strength in carbon fiber composites. Composites Science and Technology 2013;88: 120-125.
[21]Montes-Morán M., Gauthier W.,Martı́nez-Alonso A. Mechanical properties of high-strength carbon fibres. Validation of an end-effect model for describing experimental data. Carbon 2004;42: 1275-1278.
[22]Qian X., Wang X., Ouyang Q., Chen Y.,Yan Q. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation. Applied Surface Science 2012;259: 238-244.
[23]Fukada Y.,Nagarajan N. Electrophoretic deposition—mechanisms, myths and materials. Journal of materials science 2004;39: 787-801.
[24]An Q., Rider A.,Thostenson E. Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 2012;50: 4130-4143.
[25]Richard C., Balavoine F., Schultz P., Ebbesen T.,Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003;300: 775-778.
[26]Vaisman L., Wagner H.,Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 2006;128-130: 37-46.
[27]Yurekli K.,Mitchell C. A. Small-Angle Neutron Scattering from Surfactant-Assisted Aqueous Dispersions of Carbon Nanotubes. J. AM. Chem. 2004;126: 9902-9903.
[28]Tan Y.,Resasco D. E. Dispersion of Single-Walled Carbon Nanotubes of Narrow Diameter Distribution. J. Phys. Chem. B 2005;109: 14454-14460.
[29]Camponeschi E., Florkowski B., Vance R., Garrett G., Garmestani H.,Tannenbaum R. Uniform directional alignment of single-walled carbon nanotubes in viscous polymer flow. Langmuir 2006;22: 1858-1862.
[30]ASTM. Standard Test Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials. 1989, D3379 -75.
[31]Naitoa K., Tanakaa Y.,Yangb J.-M. Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon 2008;46: 189-195.
[32]Toyoda M.,Katoh M. Intercalation and exfoliation behavior of carbon fibers during electrolysis in H2SO4. Journal of Physics and Chemistry of Solids 2004;65: 257-261.
[33]Ehlert G. J.,Lin Y. Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength. Carbon 2011;49: 4246-4255.
[34]Choo H. S.,Kinumoto T. Mechanism for Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite in Sulfuric Acid Solution. Journal of The Electrochemical Society 2007;154: B1017.
[35]Yue Z. R.,Jiang W. Surface characterization of electrochemically oxidized carbon fibers. Carbon 1999;37: 1785-1796.
[36]Jawharl T. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995;33: 1561-1565.
[37]Sadezky A., Muckenhuber H.,Grothe H. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005;43: 1731-1742.
[38]Akihiko F. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Composites Science and Technology 2000;60: 249-254.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top