跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/29 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周博豪
研究生(外文):Bo-Hao Zhou
論文名稱:磷酸鋰鐵/中孔洞微碳球鋰離子電池之老化機制
論文名稱(外文):Fading mechanism of LiFePO4/MCMB lithium ion battery
指導教授:吳溪煌
指導教授(外文):She-huang Wu
口試委員:吳溪煌
口試委員(外文):She-huang Wu
口試日期:2015-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:105
中文關鍵詞:正負極裝載比鋰離子二次電池磷酸鋰鐵電池老化機制
外文關鍵詞:LiFePO4 batterylithium ion batteryloading ratioaging mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由不同正負極裝載比的500mAh磷酸鋰鐵匹配中間相碳微球之堆疊軟包全電池之循環充放電行為及交流阻抗分析探討不同正負極裝載比對LiFePO4/MCMB全電池循環老化之影響。拆解老化後電池,藉由X光繞射儀、掃描式電子顯微鏡、衰減式全反射傅立葉紅外光譜儀、電阻抗分析儀以及組裝半電池去分析在不同正負極裝載比對LiFePO4/MCMB電池老化的影響因素。在較低的正負極裝載比時,發現鋰沉積為電池老化之主因﹔在較高的正負極裝載比時,發現是由於不可逆鋰離子的損失造成電容量衰退。而在裝載比為0.9及1.3的電池經1C速率500圈循環後之電荷傳遞阻抗都較裝載比圍1.1的電池要高許多。在60oC下循環,除前述兩種老化原因外,鐵溶出及更高的鋰損失是造成電池急劇老化的原因。
500 mAh LiFePO4/MCMB pouch-type cells with various anode to cathode (A/C) loading ratios are prepared for the study. The effects of the loading ratio on the cycling performance are investigated by capacity retention and EIS studies. From the postmortem analysis with XRD, SEM, ATR-FTIR studies for the cycled cathodes and anodes, and the capacity retention and EIS studies for the coin cells assembled with cycled cathodes and anodes, respectively, the mechanism of the capacity fade of the LiFePO4/MCMB cells prepared with various A/C loading ratios are investigated. Lithium plating was found to be the main cause for the capacity loss at A/C ratio lower than 1, while the irreversible lithium loss and Li trapped in voids of anode material cause the capacity lowering at high A/C loading ratio. Furthermore, cells prepared with A/C loading ratios of 0.9 and 1.3 manifest higher charge transfer resistance than that with A/C ratio of 1.1. In addition to the factors, iron loss and severe lithium loss from LiFePO4 accerlate the capacity fade of LiFePO4/MCMB cell upon cycling at 60oC.
摘要 I
Abstract II
Content IV
LIST OF TABLES VIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2-1 Introduction of lithium ion batteries 3
2-2 Lithium iron phosphate as cathode for lithium ion battery 5
2-3 Meso Carbon Micro Beads graphite as anode for lithium ion battery 7
2-4 Aging mechanism of LiFePO4/MCMB full cells 9
2-4-1 Loss of active materials 9
2-4-2 Structural damage of active materials 10
2-4-3 Impedance increase 12
2-4-4 Lithium inventory loss 14
2-5 Lithium plating behavior on anode 16
2-5-1 Influence of lithium plating behavior on kinetic 18
2-5-2 Control anode/cathode capacity ratio to suppress lithium plating and reduce the safety risk 19
2-6 Electrolyte additive 21
2-6-1 Vinylene carbonate (VC) as electrolyte additives 22
2-6-2 Tris (Pentafluorophenyl) Borane (TPFPB) as an electrolyte additive 24
CHATPER 3 EXPERIMENTAL 25
3-1 LiFePO4/MCMB pouch type cell 25
3-1-1 Electrode prepared 25
3-1-2 Full cells assembled 25
3-2 Electrochemical performance 26
3-2-1 Cycling test 26
3-2-2 Electrochemical impedance spectroscopy study 26
3-3 Post-mortem analysis 27
3-3-1 Disassembled full cells 27
3-3-2 Structure analysis 27
3-3-3 Electrode Morphology observation 28
3-3-4 Fourier transform infrared-attenuated total reflectance (FTIR-ATR) study 28
3-3-5 Composition determination for LiFePO4 cathode 29
3-4 Coin-type cells 30
CHAPTER 4 RESULTS AND DISCUSSION 32
4-1 Materials identification 32
4-1-1 Characterization of LiFePO4 powders 32
4-1-2 Characterization of mesocarbon microbeads powders 36
4-2 Chacteristics of LiFePO4-MCMB cells prepared with various anode/cathode loading ratios. 39
4-2-1 Charge-discharge curve analysis of formation cycle 39
4-2-2 Capacity retention study 42
4-2-3 Electrochemical impedance spectra of cycled cells 43
4-2-4 XRD patterns of cycled cathodes and anodes 45
4-2-5 Morphologies of cathodes and anodes of cycled cells 47
4-2-6 Lithium loss and impedance analysis with coin-type cell 50
4-2-7 Fourier transform infrared spectroscopy study for the cycled cathodes and anodes 54
4-2-8 Effects of A/C loading ratio on the rate-capability of LiFePO4-MCMB cells 57
4-2-9 Electrochemical impedance spectroscopy of rate-capability on LiFePO4-MCMB full cells at various A/C rations. 60
4-2-10 XRD patterns of cycled cathodes and anodes 63
4-2-11 Morphologies of the cycled cathodes and anodes 68
4-2-12 Relithiation and composition determination for the cycled LFP cathodes 75
4-3 High temperature performance of LiFePO4-MCMB full cells 81
Chapter 5 Conclusion 102
Chapter 6 Reference 103
[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Journal of The Electrochemical Society, 144 (1997) 1188-1194.
[2] J.B. Goodenough, Y. Kim, Chemistry of Materials, 22 (2010) 587-603.
[3] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Materials Science and Engineering: R: Reports, 73 (2012) 51-65.
[4] C.-S. Kim, K.M. Jeong, K. Kim, C.-W. Yi, Electrochimica Acta, 155 (2015) 431-436.
[5] O.K. Park, Y. Cho, S. Lee, H.-C. Yoo, H.-K. Song, J. Cho, Energy & Environmental Science, 4 (2011) 1621-1633.
[6] H.M. Wu, I. Belharouak, H. Deng, A. Abouimrane, Y.-K. Sun, K. Amine, Journal of The Electrochemical Society, 156 (2009) A1047-A1050.
[7] V. Agubra, J. Fergus, Materials, 6 (2013) 1310-1325.
[8] A.R. Armstrong, N. Dupre, A.J. Paterson, C.P. Grey, P.G. Bruce, Chemistry of materials, 16 (2004) 3106-3118.
[9] S. Basu, in, Google Patents, 1983.
[10] P.P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. Pasquali, Journal of the Electrochemical Society, 149 (2002) A886-A890.
[11] D. Shanmukaraj, G. Wang, R. Murugan, H.K. Liu, Materials Science and Engineering: B, 149 (2008) 93-98.
[12] R. Dedryvere, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, Chemistry of Materials, 20 (2008) 7164-7170.
[13] L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, J.M. Tarascon, Chemistry of Materials, 18 (2006) 5520-5529.
[14] A.K. Padhi, K. Nanjundaswamy, J.B.d. Goodenough, Journal of the electrochemical society, 144 (1997) 1188-1194.
[15] C. Julien, K. Zaghib, A. Mauger, M. Massot, A. Ait-Salah, M. Selmane, F. Gendron, Journal of applied physics, 100 (2006) 063511.
[16] J.-K. Kim, G. Cheruvally, J.-H. Ahn, J Solid State Electrochem, 12 (2008) 799-805.
[17] S.W. Oh, H.J. Bang, S.-T. Myung, Y.C. Bae, S.-M. Lee, Y.-K. Sun, Journal of The Electrochemical Society, 155 (2008) A414-A420.
[18] Z. Chen, J. Dahn, Journal of the Electrochemical Society, 149 (2002) A1184-A1189.
[19] X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, Advanced materials, 21 (2009) 2710-2714.
[20] J. Yi, C. Wang, Y. Xia, Electrochemistry Communications, 33 (2013) 115-118.
[21] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon, 38 (2000) 183-197.
[22] M.-H. Chen, G.-T. Wu, G.-M. Zhu, J.-K. You, Z.-G. Lin, J Solid State Electrochem, 6 (2002) 420-427.
[23] K. Amine, J. Liu, I. Belharouak, Electrochemistry Communications, 7 (2005) 669-673.
[24] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Journal of Power Sources, 147 (2005) 269-281.
[25] M. Dubarry, B.Y. Liaw, Journal of Power Sources, 194 (2009) 541-549.
[26] Y. Zhang, C.-Y. Wang, X. Tang, Journal of Power Sources, 196 (2011) 1513-1520.
[27] L. Castro, R. Dedryvère, J.-B. Ledeuil, J. Bréger, C. Tessier, D. Gonbeau, Journal of The Electrochemical Society, 159 (2012) A357-A363.
[28] M. Kassem, J. Bernard, R. Revel, S. Pélissier, F. Duclaud, C. Delacourt, Journal of Power Sources, 208 (2012) 296-305.
[29] J.-H. Kim, S.C. Woo, M.-S. Park, K.J. Kim, T. Yim, J.-S. Kim, Y.-J. Kim, Journal of Power Sources, 229 (2013) 190-197.
[30] H. Song, Z. Cao, X. Chen, H. Lu, M. Jia, Z. Zhang, Y. Lai, J. Li, Y. Liu, J Solid State Electrochem, 17 (2013) 599-605.
[31] L. Tan, L. Zhang, Q. Sun, M. Shen, Q. Qu, H. Zheng, Electrochimica Acta, 111 (2013) 802-808.
[32] S. Grolleau, A. Delaille, H. Gualous, P. Gyan, R. Revel, J. Bernard, E. Redondo-Iglesias, J. Peter, Journal of Power Sources, 255 (2014) 450-458.
[33] M. Xu, L. Hao, Y. Liu, W. Li, L. Xing, B. Li, The Journal of Physical Chemistry C, 115 (2011) 6085-6094.
[34] S. Zhang, M.S. Ding, K. Xu, J. Allen, T.R. Jow, Electrochemical and Solid-State Letters, 4 (2001) A206-A208.
[35] J. Li, E. Murphy, J. Winnick, P.A. Kohl, Journal of Power Sources, 102 (2001) 294-301.
[36] M. Kassem, C. Delacourt, Journal of Power Sources, 235 (2013) 159-171.
[37] W. Chang, S.-J. Kim, I.-T. Park, B.-W. Cho, K.Y. Chung, H.-C. Shin, Journal of Alloys and Compounds, 563 (2013) 249-253.
[38] R.V. Bugga, M.C. Smart, ECS Transactions, 25 (2010) 241-252.
[39] L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix, J.M. Tarascon, Electrochemistry Communications, 8 (2006) 1639-1649.
[40] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy & Environmental Science, 7 (2014) 513-537.
[41] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, Electrochimica Acta, 47 (2002) 1423-1439.
[42] Y. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Journal of the American Chemical Society, 124 (2002) 4408-4421.
[43] H.-C. Wu, C.-Y. Su, D.-T. Shieh, M.-H. Yang, N.-L. Wu, Electrochemical and Solid-State Letters, 9 (2006) A537-A541.
[44] S.S. Zhang, Journal of Power Sources, 162 (2006) 1379-1394.
[45] S.-h. Wu, A. Huang, Journal of The Electrochemical Society, 160 (2013) A684-A689.
[46] K. Ushirogata, K. Sodeyama, Y. Okuno, Y. Tateyama, Journal of the American Chemical Society, 135 (2013) 11967-11974.
[47] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Electrochimica Acta, 136 (2014) 274-285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 39. 孫本初(2001),「知識管理-組織發展新利器」。人事月刊,第32卷第4期,頁8-22。
2. 46. 張光進 (1996),「廿一世紀新興的教育企業:全球知識交換中心」。文教新潮,第1卷第1期,頁1-5。
3. 48. 張志明、劉淑娟(2001),「知識管理在學校營繕工程之運用:以花蓮縣國民中小學為例」。花蓮師院學報,第11期,頁55-81。
4. 40. 徐大偉(2001),「知識經濟概念在學校經營與管理之應用」。研習資訊,第18卷第4期,頁70-78。
5. 33. 邱貴發 (1998)。「網路世界中的學習:理念與發展」。教育研究資訊雙月刊,第6卷笫1期,頁20-27。
6. 22. 吳清山、黃旭鈞(2000),「學校推動知識管理策略初探」。教育研究月刊,第77期,頁18-32。
7. 6. 王保進(2001),「知識經濟時代下之教育省思」。教育資料與研究,第41期,頁17-25。
8. 31. 林嘉誠(2006),「知識型政府的意涵與發展」。考銓季刊,第48期,頁1-17。
9. 19. 吳清山(2001),「知識管理與學校效能」。臺北市立師範學院學報,第32期,頁1-15。
10. 2. 王世璋(2001),「知識經濟與教育行政」。教育資料與研究,第43期,頁105-112。
11. 57. 黃秀君(2001),「知識經濟對學校教育之影響與因應策略」。教育資料與研究,第41期,頁29-34。
12. 58. 黃季仁 (1991),科技發展與教育革新。資訊與教育,第21期,頁30-36。
13. 67. 葉連祺(2001),「知識管理應用於教育之課題與因應策略」。教育研究月刊,第89期,頁32-42。
14. 76. 潘慧玲(1999),「學校效能相關概念的釐析」。教育研究資訊,7(5),138-153。
15. 79. 蔡良文(2006),考試院推動知識管理與人力資源運用之分析。考銓季刊,第48期,頁18-33。
 
無相關點閱論文