跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇紹泓
研究生(外文):Shou-huang Su
論文名稱:尖晶石LiNi0.5Mn1.5O4正極材料的結晶構造對循環充放電特性之影響
論文名稱(外文):Effects of crystalline structure on the cycling performance of spinel LiNi0.5Mn1.5O4 cathode materials
指導教授:吳溪煌
指導教授(外文):She-huang Wu
口試委員:吳溪煌
口試委員(外文):She-huang Wu
口試日期:2015-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:98
中文關鍵詞:鋰離子電池正極材料
外文關鍵詞:lithium ion batterycathode materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
利用噴霧熱解法搭配後續的熱處理程序(900oC熱處理和700oC不同時間退火熱處理)來製備含有有序P4332及無序Fd3 ̅m兩種不同空間群結構的LiNi0.5Mn1.5O4正極材料。以X光繞射、中子繞射、拉曼光譜、掃描式電子顯微鏡和超解析穿透式電子顯微鏡分析合成粉末之結晶構造和粉末形貌。將合成粉末製作成圓形電極,與鋰金屬組裝成硬幣型電池分別進行循環伏安和循環充放電測試。經過精算過的結果顯示,隨著700oC退火熱處理時間增長,樣品XRD計算得到之晶格常數變小,NPD計算得到之P4332相組成增加。電化學性能測試結果顯示含有較高Fd3 ̅m結構的900oC熱處理LiNi0.5Mn1.5O4粉末具有最好的循環充放電特性。
LiNi0.5Mn1.5O4 cathode materials with two different space group (Fd3 ̅-3m and P4332) are synthesized by a spray pyrolysis method followed by heat treatment at 900oC for 8 hours and post annealing at 700oC for various durations (0-96 h). The structure and morphology of the prepared samples are studied with X-ray diffraction (XRD),neutron diffraction(NPD), Raman spectroscopy, scanning electron microscope (SEM), and high resolution transmission microscope. Their electrochemical properties are investigated by cyclic voltammetric and capacity retention studies with coin-type cells comprised with cathodes prepared with the prepared powders. The results of Rietveld refinement with XRD patterns show that the calculated lattice parameter decreases with increasing duration of post annealing, while the results of NPD study manifest that the weight fraction of ordered P4332 phase increases at the same time. From the results of capacity retention study, it can be found that the cell prepared with 900oC heat-treated sample exhibits the most promising cycling performance among the prepared samples.
Contents
中文摘要 I
Abstract II
Contents III
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2-1 Principle of lithium ion batteries 4
2-2 Cathode materials for lithium ion batteries 7
2-2-1 LiCoO2 7
2-2-2 LiNiO2 9
2-2-3 LiMn2O4 11
2-2-4 LiNi1/3Mn1/3Co1/3O2 13
2-2-5 LiNi0.5Mn1.5O4 15
Chapter 3 Experimental 22
3-1 Powder preparation 22
3-1-1 Synthesis of LiNi0.5Mn1.5O4powder 22
3-2 Powder characterization 25
3-2-1 X-ray powder diffraction analysis 25
3-2-2 Neutron powder diffraction analysis 25
3-2-3 Composition determination 25
3-2-4 Raman spectrum 26
3-3 Morphology of samples 27
3-3-1 Scanning electron microscope 27
3-3-2 High-resolution transmission electron microscopy 28
3-4 Fabrication of test cell 29
3-4-1 preparation of the cathode electrode 29
3-4-2 preparation of the coin-type cell 30
3-5 Electrochemical analysis 31
3-5-1 Cyclic voltammetric study, CV 31
3-5-2 Capacity retention study 31
Chapter 4 Results and Discussion 32
4-1 Characterization of the prepared LiNi0.5Mn1.5O4 cathode materials (under air) 32
4-1-1 Crystalline structure and elemental composition of the LiNi0.5Mn1.5O4 samples studied with X-ray 32
4-1-2 Morphologies of the prepared LiNi0.5Mn1.5O4samples 48
4-1-3 Cyclic voltammogramsofLiNi0.5Mn1.5O4cathodes 54
4-1-4 Raman spectrometer of LiNi0.5Mn1.5O4powder 56
4-1-5 Cycling performance of the coin-type cells 57
4-2 Characterization of the prepared LiNi0.5Mn1.5O4 cathode materials (under O2) 59
4-2-1 Crystalline structure and elemental composition of the LiNi0.5Mn1.5O4 samples studied with X-ray for O2 atmosphere samples 60
4-2-2 Morphologies of the O2 atmosphere prepared LiNi0.5Mn1.5O4 samples 70
4-2-3 Cyclic voltammograms of the O2 atmosphere prepared LiNi0.5Mn1.5O4 samples. 72
4-2-4 Raman spectrometer of the O2 atmosphere prepared LiNi0.5Mn1.5O4 samples 74
4-2-5 Cycling performance of the coin-type cells 76
Chapter 5 Conclusion 78
Chapter 6 References 79
[1] M. Stanley Whittingham, 1 - Intercalation Chemistry: An Introduction, in: M.S.W.J. Jacobson (Ed.) Intercalation Chemistry, Academic Press, 1982, pp. 1-18.
[2] J. Kim, P. Fulmer, A. Manthiram, Materials research bulletin, 34 (1999) 571-579.
[3] C.-H. Doh, D.-H. Kim, H.-S. Kim, H.-M. Shin, Y.-D. Jeong, S.-I. Moon, B.-S. Jin, S.W. Eom, H.-S. Kim, K.-W. Kim, D.-H. Oh, A. Veluchamy, Journal of Power Sources, 175 (2008) 881-885.
[4] G.T.-K. Fey, C.-L. Hsiao, P. Muralidharan, Journal of Power Sources, 189 (2009) 837-840.
[5] J. Dahn, U. Von Sacken, M. Juzkow, H. Al‐Janaby, Journal of the Electrochemical Society, 138 (1991) 2207-2211.
[6] H. Arai, M. Tsuda, Y. Sakurai, Journal of Power Sources, 90 (2000) 76-81.
[7] J.R. Dahn, U. von Sacken, M.W. Juzkow, H. Al‐Janaby, Journal of The Electrochemical Society, 138 (1991) 2207-2211.
[8] Z. Lu, X. Huang, H. Huang, L. Chen, S. Joop, Solid State Ionics, 120 (1999) 103-107.
[9] Y. Yang, C. Xie, R. Ruffo, H. Peng, D.K. Kim, Y. Cui, Nano Letters, 9 (2009) 4109-4114.
[10] H.-Q. Wang, F.-Y. Lai, Y. Li, X.-H. Zhang, Y.-G. Huang, S.-J. Hu, Q.-Y. Li, Electrochimica Acta.
[11] Y. Xia, M. Yoshio, Journal of Power Sources, 66 (1997) 129-133.
[12] H.W. Chan, J.G. Duh, S.R. Sheen, Journal of Power Sources, 115 (2003) 110-118.
[13] M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J.i. Mizuki, R. Kanno, Journal of the American Chemical Society, 132 (2010) 15268-15276.
[14] N. Yabuuchi, T. Ohzuku, Journal of Power Sources, 119–121 (2003) 171-174.
[15] L. Zhang, X. Wang, T. Muta, D. Li, H. Noguchi, M. Yoshio, R. Ma, K. Takada, T. Sasaki, Journal of Power Sources, 162 (2006) 629-635.
[16] P. Gao, G. Yang, H. Liu, L. Wang, H. Zhou, Solid State Ionics, 207 (2012) 50-56.
[17] J.-W. Wen, D.-W. Zhang, Y.-C. Teng, C.-H. Chen, Y. Xiong, Electrochimica Acta, 55 (2010) 2306-2310.
[18] C. Deng, L. Liu, W. Zhou, K. Sun, D. Sun, Electrochemical and Solid-State Letters, 10 (2007) A279-A282.
[19] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J.R. Dahn, Journal of The Electrochemical Society, 144 (1997) 205-213.
[20] Y.K. Yoon, C.W. Park, H.Y. Ahn, D.H. Kim, Y.S. Lee, J. Kim, Journal of Physics and Chemistry of Solids, 68 (2007) 780-784.
[21] S. Mandal, R.M. Rojas, J.M. Amarilla, P. Calle, N.V. Kosova, V.F. Anufrienko, J.M. Rojo, Chemistry of Materials, 14 (2002) 1598-1605.
[22] C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, Solid State Ionics, 81 (1995) 167-170.
[23] T. Ohzuku, S. Takeda, M. Iwanaga, Journal of Power Sources, 81–82 (1999) 90-94.
[24] D. Pasero, N. Reeves, V. Pralong, A.R. West, Journal of The Electrochemical Society, 155 (2008) A282-A291.
[25] K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, Journal of The Electrochemical Society, 151 (2004) A296-A303.
[26] G.Q. Liu, L. Wen, X. Wang, B.Y. Ma, Journal of Alloys and Compounds, 509 (2011) 9377-9381.
[27] M. Kunduraci, G.G. Amatucci, Electrochimica Acta, 53 (2008) 4193-4199.
[28] M. Kunduraci, G.G. Amatucci, Journal of The Electrochemical Society, 153 (2006) A1345-A1352.
[29] L. Wang, H. Li, X. Huang, E. Baudrin, Solid State Ionics, 193 (2011) 32-38.
[30] S. Brutti, G. Greco, P. Reale, S. Panero, Electrochimica Acta, 106 (2013) 483-493.
[31] X. Wu, X. Li, Z. Wang, H. Guo, J. Wang, P. Yue, J Solid State Electrochem, 17 (2013) 1029-1038.
[32] Y. Wei, K.-B. Kim, G. Chen, Electrochimica Acta, 51 (2006) 3365-3373.
[33] X. Wang, L. Xing, X. Liao, X. Chen, W. Huang, Q. Yu, M. Xu, Q. Huang, W. Li, Electrochimica Acta.
[34] M. Xu, Y. Liu, B. Li, W. Li, X. Li, S. Hu, Electrochemistry Communications, 18 (2012) 123-126.
[35] S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li, W. Li, Electrochimica Acta, 147 (2014) 565-571.
[36] B. Li, Y. Wang, W. Tu, Z. Wang, M. Xu, L. Xing, W. Li, Electrochimica Acta, 147 (2014) 636-642.
[37] X. Zheng, T. Huang, Y. Pan, W. Wang, G. Fang, M. Wu, Journal of Power Sources, 293 (2015) 196-202.
[38] X. Zhu, X. Li, Y. Zhu, S. Jin, Y. Wang, Y. Qian, Electrochimica Acta, 121 (2014) 253-257.
[39] M. Kunduraci, G.G. Amatucci, Journal of Power Sources, 165 (2007) 359-367.
[40] J. Cabana, M. Casas-Cabanas, F.O. Omenya, N.A. Chernova, D. Zeng, M.S. Whittingham, C.P. Grey, Chemistry of Materials, 24 (2012) 2952-2964.
[41] J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Chemistry of Materials, 16 (2004) 906-914.
[42] X. Ma, B. Kang, G. Ceder, Journal of The Electrochemical Society, 157 (2010) A925-A931.
[43] G. Liu, K.-S. Park, J. Song, J.B. Goodenough, Journal of Power Sources, 243 (2013) 260-266.
[44] T.A. Arunkumar, A. Manthiram, Electrochimica Acta, 50 (2005) 5568-5572.
[45] J. Yang, X. Zhang, Z. Zhu, F. Cheng, J. Chen, Journal of Electroanalytical Chemistry, 688 (2013) 113-117.
[46] J.H. Lee, K.J. Kim, Electrochimica Acta, 137 (2014) 169-174.
[47] J. Wang, W. Lin, B. Wu, J. Zhao, Electrochimica Acta, 145 (2014) 245-253.
[48] M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, Chemistry of Materials, 18 (2006) 3585-3592.
[49] Y. Idemoto, H. Narai, N. Koura, Journal of Power Sources, 119–121 (2003) 125-129.
[50] D. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, Electrochimica Acta, 52 (2007) 1919-1924.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文