跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李晉安
研究生(外文):Jin-An Li
論文名稱:金鈀/還原氧化石墨烯電觸媒材料合成與特性研究
論文名稱(外文):Synthesis and Characterization of Au-Pd/Reduced Graphene Oxide Electrocatalysts
指導教授:林鴻明林鴻明引用關係
指導教授(外文):Hong-Ming Lin
口試委員:林鴻明
口試委員(外文):Hong-Ming Lin
口試日期:2015-07-01
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:73
中文關鍵詞:甲酸燃料電池觸媒石墨烯
外文關鍵詞:catalystFormic acidFuel cellAuPdgraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
直接甲酸燃料電池系統中,甲酸氧化過程所產生的副產物一氧化碳,會吸附在貴金屬鈀觸媒表面,使得觸媒毒化,同時甲酸可能浸溶出鈀觸媒,導致觸媒電催化的活性下降。過去研究顯示,金鈀固溶體的貴金屬奈米觸媒,可以改善毒化及浸溶的現象,提升了觸媒使用率以及使用壽命。本研究比較兩種不同方式,分別為還原劑硼氫化鈉和光還原反應,還原金鈀合金披覆於氧化石墨烯以製備金鈀/還原氧化石墨烯電觸媒。這兩種合成方式皆不用進行加熱處理。接著,將合成材料進行物理化學和電催化特性比較。本研究使用FT-IR和XRD進行官能基及結構分析,TGA和ICP進行組成確認,FE-SEM觀察材料表面的微觀形貌。CV循環伏安和I-t曲線用來測試材料的電化學反應及穩定性。
FE-SEM結果顯示光還原的金鈀奈米顆粒塗覆在還原石墨烯氧化物表面顆粒直徑約7-9nm,且均勻地分散。然而,EDS分析的結果,顯示金鈀成分與實驗設計有很大偏差。ICP-OES分析,證實同樣結果。 金鈀電催化劑的電化學分析中,金鈀/RGO-01A樣品具有較好的電氧化電流密度。此外,它的電流穩定性優異很多在掃描20週期的實驗。計時電流分析(CA)結果,顯示金鈀/ RGO-01A比金鈀/RGO-硼氫化鈉有更高的響應和壽命。但這些樣品的穩定性和壽命時間,在實際應用還不足夠,因商業測試需至少兩萬圈的循環伏安後,仍有百分之八十的電流穩定性。
In a direct formic acid fuel cell system, the carbon monoxide produced during the oxidation of formic acid will adsorb on the surface of palladium catalyst and poisoning palladium, also formic acid may leaching and dissolving palladium, leads to decrease the electro-catalytic activity. Previous studies indicated the nano-gold-palladium solid solution can inhibit CO poisoning and prevent the leaching of palladium that may increase electrocatalytic activity and lifetime. This study compared two different methods to reduce gold-palladium alloy on reduced graphene oxide. Two methods are included using reducing agent of sodium borohydride and photoreduction by X-ray irradiation. These two methods can easy to synthesize at room temperature. The gold-palladium nanoparticles are homogeneously deposited on the surface of reduced graphene oxide (RGO). The physical, chemical and electrochemical properties are applied to examine these samples. In this study, FT-IR and XRD are used for functional group and structural analysis, TGA and ICP for compositional measuremnet, the FE-SEM for observing the surface morphology of samples. Cyclic voltammetry (CV) and I-t test are used to evaluate the electrochemical properties of these catalysts.
The results of FE-SEM images indicate the diameters of Au-Pd nanoparticles are about 7-9nm and it uniformly disperse on the graphene oxide. However, the results of EDS analysis indicate its composition is not closed to original design. ICP-OES analysis is confirmed EDS results. In electrochemical analysis of Au-Pd electrocatalysts, AuPd/RGO-01A has the better electro-oxidizing current density. Also, its current stability is excellent up to 20 cycles of experiment. Chronoamperometry analysis (CA) results show AuPd/RGO-01A one has the higher response and life time than that of AuPd/RGO-NaBH4. But the stability and life time of these samples are not good enough for practical applications.
Table of Contents
誌謝 i
Abstract ii
摘要 iv
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Introduction of Fuel cells 4
2.1.1 Direct Formic Acid Fuel Cells (DFAFCs) 5
2.2 Introduction of Carbon Materials 8
2.2.1 Carbon Nanotubes 8
2.2.2 Graphene 11
2.2.3 Graphene Oxide 14
2.2.4 Reduced Graphene Oxide 16
2.3 Introduction of Anode Catalysts 18
2.3.1 Characteristics of Pd Catalyst 20
2.3.2 Characteristics of Au Catalyst 22
2.3.3 Au-Pd Bimetallic Catalysts 25
2.4 Synthesis technology 27
2.4.1 Reducing Agent of Sodium Borohydride 27
2.4.2 Synchrotron X-ray Irradiation Method 29
2.5 Electrochemistry 32
2.5.1 Cyclic Voltammetry 32
2.5.2 Chronoamperometry Analysis 32
Chapter 3 Experiment 33
3.1 Materials 33
3.2 Samples Fabrication 34
3.2.1 Acid Treatment of MWCNTs Preparation 34
3.2.2 Graphene Oxide 35
3.2.3 Noble Metal Catalysts Fabrication 36
3.3 Material Characteristics 40
3.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 40
3.3.2 Raman Scattering Spectroscopy (RS) 40
3.3.3 X-Ray Diffraction Analysis (XRD) 41
3.3.4 Field Emission Scanning Electron Microscopy (FE-SEM) 42
3.4 Contents Analysis 43
3.4.1 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 43
3.4.2 Thermogravimetric Analyzer (TGA) 44
3.5 Cyclic Voltammetry Measurement (C-V) 45
Chapter 4 Results and Discussion 46
4.1 Fourier Transform Infrared Spectroscopy 46
4.2 Raman Spectroscopy 48
4.3 Structure Analysis by XRD 53
4.4 Morphological Observations by FE-SEM 55
4.5 Elements Composition by ICP 62
4.6 Thermogravimetric Analysis (TGA) 62
4.7 Cyclic Voltammetry Measurement 64
4.8 I-t Curve 69
Chapter 5 Conclusions 70
Chapter 6 Suggestion of Future Studies 72
References 73
[1] H. M. Kung, "Synthesis and characterization of gold and palladium catalysts supported on doped metal oxide modified multi-walled carbon nanotubes," Master Thesis. Taiwan, Taipei: Tatung University, Department of Materials Engineering, 2014.
[2] B. Feder, New York Times, 16 March 2003.
[3] S. Ha, B. Adams and R. I. Masel, "A miniature air breathing direct formic acid fuel cell," Journal of Power Sources 128, p. 119–124, 2004.
[4] H. Chang, J. R. Kim, J. H. Cho, H. K. Kim and H. K. Choi, "Materials and processes for small fuel cells," Solid State Ionics 148 (3-4), p. 601–606, 2002.
[5] A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy and E. Peled, "Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications," Journal of Power Sources 117, p. 22–25, 2003.
[6] S. Ha, R. Larsen, Y. Zhu and R. I. Masel, "Direct formic acid fuel cells with 600 mA/cm2 at 0.4 V and 22 °C," Fuel Cells 4 (4), p. 337–343, 2004.
[7] Y. M. Zhu, Z. Khan and R. I. Masel, "The behavior of palladium catalysts in direct formic acid fuel cells," Journal of Power Sources 139, p. 15–20, 2005.
[8] X. Yu and P. G. Pickup, "Deactivation/reactivation of a Pd/C catalyst in a direct formic acid fuel cell (DFAFC): Use of array membrane electrode assemblies," Journal of Power Sources 187, p. 493–499, 2009.
[9] Y. Pan, R. Zhang and S. Blair, "Anode poisoning study in direct formic acid fuel cells," Electrochemical and Solid-State Letters 12 (3), p. 23–26, 2009.
[10] V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp and M.Zhiani, "Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)," Journal of Power Sources 190 (2), p. 241–251, 2009.
[11] T. C. Deivaraj and J. Y. Lee, "Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study," Journal of Power Sources 142 (1-2), p. 43–49, 2005.
[12] S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, p. 56–58, 07 November 1991.
[13] C. Lee, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science 321, p. 385–388, 2008.
[14] "Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene," University of Maryland, 24 March 2008. [Online]. Available: http://www.sciencedaily.com/releases/2008/03/080324094514.htm.
[15] R. S. Khurmi, Material Science, 5th ed., India: S. Chand & Company Ltd., 2013.
[16] Y. L. Lee, "The Synthesis and Characterization of Nano Noble Metals/ WO3/MWCNTs Hybrid Electrocatalysts," Master Thesis. Taiwan, Taipei: Tatung University, Department of Chemical Engineering, 2013.
[17] 周芳妃, "甲酸(Formic acid)," 27 Sep. 2010. [Online]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=8833.
[18] Wikipedia, "Formic acid fuel cell (FAFC)," [Online]. Available: http://en.wikipedia.org/wiki/Formic_acid_fuel_cell.
[19] K. S. Lyons, M. Teliska, W. Baker and J. Pietron, "Low-Platinum Catalysts for Oxygen Reduction at PEMFC Cathodes," 2005 DOE Hydrogen Program, p. 823–827, 2005.
[20] X.-Z. Yuan and H. Wang, "PEM Fuel Cell Fundamentals," in PEM Fuel Cell Electrocatalysts and Catalyst Layers, 2008, p. 39–41.
[21] X. Yu and P. G. Pickup, "Recent advances in direct formic acid fuel cells (DFAFC)," Journal of Power Sources 182, p. 124–132, 2008.
[22] W. L. Law, A. M. Platt, P. D. Wimalaratne and S. L. Blair, "Effect of Organic Impurities on the Performance of Direct Formic Acid Fuel Cells," Journal of The Electrochemical Society 156 (5), p. 553–557, 2009.
[23] X. Yu and P. G. Pickup, "Novel Pd–Pb/C bimetallic catalysts for direct formic acid fuel cells," Journal of Power Sources 192, p. 279–284, 2009.
[24] J. Zhang and C. Song, "Electrocatalytic Oxygen Reduction Reaction," in PEM Fuel Cell Electrocatalysts and Catalyst Layers, 2008, p. 89–134.
[25] S. Yang, X. Zhang, H. Mi and X. Ye, "Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid," Journal of Power Sources 175, no. 26–32, 2008.
[26] M. Mazurkiewicz, A. Małolepszy, A. Mikołajczuk, P. Kędzierzawski, L. Stobiński, K. J. Kurzydłowski and A. Borodziński, "Highly Dispersed Pd/MWCNTS Catalysts For Electrooxidation of Formic Acid in Direct fuel Cells," in Mikrosympozjum sprawozdawcze, 2012.
[27] Y. W. Rhee, S. Y. Ha and R. I. Masel, "Crossover of formic acid through Nafion® membranes," J. Power Sources 117, p. 35, 2003.
[28] C. Rice, S. Ha, R. Masel, P. Waszczuk, A. Wieckowski and T. Barnard, "Direct formic acid fuel cells," Journal of Power Sources 111, p. 83, 2002.
[29] W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, "Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells," The Journal of Physical Chemistry B 110, p. 15353–15358, 2006.
[30] C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau and J. M. Léger, "Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts," Electrochimica Acta 49, p. 3901–3908, 2004.
[31] R. Larsen, S. Ha, J. Zakzeski and R. I. Masel, "Unusually active palladium-based catalysts for the electrooxidation of formic acid," Journal of Power Sources 157, p. 78–84, 2006.
[32] J. H. Yu, H. G. Choi and S. M. Cho, "Performance of direct dimethyl ether fuel cells at low temperature," Electrochemistry Communications 7 (12), p. 1385–1388, 2005.
[33] S. Chen, C. Liu, M. Yang, D. Lu, L. Zhu and Z. Wang, "Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry," Journal of Hazardous Materials 170, p. 247–251, 2009.
[34] M. Tuzen, K. Saygi and M. Soylak, "Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes," Journal of Hazardous Materials 152 (2), p. 632–639, 2008.
[35] A. Stafiej and K. Pyrzynska, "Adsorption of heavy metal ions with carbon nanotubes," Separation and Purification Technology 58, p. 49–52, 2007.
[36] C. Herrero Latorre, J. Álvarez Méndez, J. Barciela García, S. García Martín and R. M. Peña Crecente, "Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: a review," Analytica Chimica Acta 749, p. 16–35, 2012.
[37] P. G. Collins and P. Avouris, "Nanotubes for electronics," Scientific American 283(6), p. 62–69, 2000.
[38] H. P. Boehm, R. Setton and E. Stumpp, "Nomenclature and terminology of graphite intercalation compounds," Pure and Applied Chemistry 66 (9), p. 1893–1901, 1994.
[39] H. P. Boehm, A. Clauss, G. O. Fischer and U. Hofmann, "Das Adsorptionsverhalten sehr dünner Kohlenstoffolien," Zeitschrift für anorganische und allgemeine Chemie (in German) 316 (3–4), p. 119–127, 1962.
[40] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage," Science 347 (6217), p. 1246501, 2015.
[41] D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, "Experimental Review of Graphene," ISRN Condensed Matter Physics 2012, p. 1–56, 2012.
[42] Y. Yamada, H. Yasuda, K. Murota, M. Nakamura, T. Sodesawa and S. Sato, "Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy," Journal of Material Science 48 (23), p. 8171–8198, 2013.
[43] Y. Yamada, J. Kim, K. Murota, S. Matsuo and S. Sato, "Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy," Carbon 70, p. 59–74, 2014.
[44] Graphene Oxide Paper, Northwestern University, 2011.
[45] A. Geim, "Graphene: Status and Prospects," Science 324 (5934), p. 1530–1534, 2009.
[46] A. K. Geim and A. H. MacDonald, "Graphene: Exploring carbon flatland," Physics Today 60 (8), p. 35–41, 2007.
[47] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. d. Heer, "Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics," The Journal of Physical Chemistry B 108 (52), p. 19912–19916, 2004.
[48] P. Sutter, "Epitaxial graphene: How silicon leaves the scene," Nature Materials 8 (3), p. 171–172, 2009.
[49] S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Röckert, J. Xiao, C. Papp, O. Lytken, H. Steinrück, P. Müller and A. Hirsch, "Wet chemical synthesis of graphene," Adv Mater. 25(26), p. 3583–3587, 2013.
[50] K. Ji, G. Chang, M. Oyama, X. Shang, X. Liu and Y. He, "Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell," Electrochimica Acta 85, p. 84– 89, 2012.
[51] M. J. Fernandez-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso and J. M. D. Tascon, "Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions," Journal of Physical Chemistry C 114 (14), p. 6426–6432, 2010.
[52] M. Choucair, P. Thordarson and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis and sonication," Nature Nanotechnology 4 (1), p. 30–33, 2008.
[53] M. Choucair, P. Thordarson and J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis," in GraphITA, Italy, 2011.
[54] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature 458 (7240), p. 872–876, 2009.
[55] J. Liying, L. Zhang, X. Wang, G. Diankov and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature 458 (7240), p. 877–880, 2009.
[56] Y. Hernandez, V. Nicolosi, M. Lotya and F. M. Blighe, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology 3, p. 563–568, 2008.
[57] J. Moore, C. Stanitski and P. Jurs, "9.4 Hybridization in Molecules with Multiple Bonds," in Principles of Chemistry: The Molecular Science, 1st ed., Cengage Learning, 2009, p. 324.
[58] L. Stobinski, A. Malolepszy, M. Mazurkiewicz, B. Lesiak, B. Mierzwa, G. Trykowski, D. Wasik, J. Zemek, P. Jiricek and H. M. Lin, "Graphene Oxide," Warsaw, 2014.
[59] W. S. Hummers Jr. and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society 80 (6), p. 1339, 1958.
[60] M. Biron, "Chapter 7 - Future prospects for thermoplastics and thermoplastic composites," in Thermoplastics and Thermoplastic Composites, Elsevier Ltd., 2007, p. 963.
[61] 元智大學, “甲酸燃料電池膜電極組之氣體擴散層製作方法”. 台灣 專利: I270997, 2005.
[62] Wikipedia, "Hydroxyl," [Online]. Available: http://en.wikipedia.org/wiki/Hydroxyl.
[63] J. d. L. Fuente, "Graphenea - Reduced Graphene Oxide," 2010. [Online]. Available: http://www.graphenea.com/pages/reduced-graphene-oxide#.VVmfqvmqpDj.
[64] H. He, J. Klinowski, M. Forster and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters 287, p. 53–56, 1998.
[65] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, "Improved Synthesis of Graphene Oxide," ACS Nano 4 (8), p. 4806–4814, 2010.
[66] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊(Physics Bomonthly) 33 (2), p. 163–167, 2011.
[67] S. Pei and H. M. Cheng, "The reduction of graphene oxide," Carbon 50 (9), p. 3210–3228, 2012.
[68] S. Stankovich, D. A. Dikin, R. D. Piner and K. A. Kohlhaas, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon 45 (7), p. 1558–1565, 2007.
[69] D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology 3 (2), p. 101–105, 2008.
[70] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park and I. S. Jung, "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials 19 (12), p. 1987–1992, 2009.
[71] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller and R. D. Piner, "Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy," Carbon 47 (1), p. 145–152, 2009.
[72] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors," ACS Nano 2 (3), p. 463–470, 2008.
[73] X. Wang, L. Zhi and K. Mullen, "Transparent conductive graphene electrodes for dye-sensitized solar cells," Nano Letters 8 (1), p. 323–327, 2008.
[74] W. Gao, L. B. Alemany, L. Ci and P. M. Ajayan, "New insights into the structure and reduction of graphite oxide," Nature Chemistry 1(5), p. 403–408, 2009.
[75] S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, "Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids," Carbon 48 (15), p. 4466–4474, 2010.
[76] R. A. Serway, Principles of Physics, 2nd ed., London: Saunders College, 1998, p. 602.
[77] "2.7.9 Physical properties of sea water," in National Physical Laboratory, Kaye & Laby, 2011.
[78] R. M. Pashley, M. Rzechowicz, L. R. Pashley and M. J. Francis, "De-Gassed Water Is a Better Cleaning Agent," J. Phys. Chem. B 109 (3), p. 1235, 2005.
[79] K. J. Laidler, “A glossary of terms used in chemical kinetics, including reaction dynamics,” Pure and Applied Chemistry 68 (1), p. 155, 1996.
[80] Wikipedia, "Electrocatalyst," [Online]. Available: http://en.wikipedia.org/wiki/Electrocatalyst.
[81] Wikipedia, "Catalysis," [Online]. Available: http://en.wikipedia.org/wiki/Catalysis.
[82] H. Hu, Y. Fan and H. Liu, "Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts," International Journal of Hydrogen Energy 34 (20), p. 8535–8542, 2009.
[83] A. Couper, D. Pletcher and F. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews 90 (5), p. 837–865, 1990.
[84] Wikipedia, "Fuel cell," [Online]. Available: http://en.wikipedia.org/wiki/Fuel_cell.
[85] 陳陵援 和 林修正, "燃料電池中的觸媒," 科學發展 370, p. 24–27, 2003.
[86] S. Sun and Y. Yang, "Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111), Pt(510) and Pt(911) single crystal electrodes," Journal of Electroanalytical Chemistry 467, p. 121–131, 1999.
[87] K. Persson, A. Ersson, N. Iverlund and S. Jaras, "Influence of co-metals on bimetallic palladium catalysts for methane combustion," Journal of Catalysis 231, p. 139–150, 2005.
[88] H. Yin, Y. Wada, T. Kitamura, S. M. Shingo Kambe, H. Mori, T. Sakata 且 S. Yanagida, “Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2,” Journal of Materials Chemistry 11, p. 1694–1703, 2001.
[89] Wikipedia, "Palladium," [Online]. Available: http://en.wikipedia.org/wiki/Palladium.
[90] 謝高陽, 余練民, 劉本耀 和 申泮文, "28.6 鈀、6.1 鈀的化學概要," 無機化學叢書 第九卷 錳分族 鐵系 鉑系, 科學出版社, 1996, p. 545.
[91] UNCTAD, "United Nations Conference on Trade and Development: Palladium," 2006. [Online]. Available: http://web.archive.org/web/20061206003556/http://www.unctad.org/infocomm/anglais/palladium/uses.htm.
[92] B. Mukherji, "Palladium Gains From Environmental Rules," The Wall Street Journal, 19 May 2015.
[93] Wikipedia, "Gold," [Online]. Available: http://en.wikipedia.org/wiki/Gold.
[94] M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, "Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide," Journal of Catalysis 155 (2), p. 301–309, 1989.
[95] M. Haruta, T. Kobayashi, H. Sano and N. Yamada, "Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C," Chemistry Letters 16 (2), p. 405–408, 1987.
[96] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio and F. Uribe, "Platinum Monolayer Fuel Cell Electrocatalysts," Topics in Catalysis 46 (3-4), p. 249–262, 2007.
[97] F. D. Toste, "Gold catalysis for organic synthesis," Beilstein Journal of Organic Chemistry 7, p. 553–554, 2011.
[98] H. G. Raubenheimer and H. Schmidbaur, "The Late Start and Amazing Upswing in Gold Chemistry," Journal of Chemical Education 91 (12), p. 2024, 2014.
[99] C. H. Bartholomew and R. J. Farrauto, Fundamentals of industrial catalytic processes, 2nd ed., Hoboken, New Jersey: John Wiley & Sons, 2011.
[100] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, "Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability," Science 315 (5811), p. 493–497, 2007.
[101] J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, "Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters," Science 315 (5809), p. 220–222, 2007.
[102] A. G. Pavese, V. M. Solis and M. C. Giordano, "Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd(II) ions," Electrochimica Acta 32 (8), p. 1213–1216, 1987.
[103] A. Q. Wang, C. M. Chang and C. Y. Mou, "Evolution of Catalytic Activity of Au−Ag Bimetallic Nanoparticles on Mesoporous Support for CO Oxidation," The Journal of Physical Chemistry B 109 (40), p. 18860–18867, 2005.
[104] F. Maroun, F. Ozanam, M. O. M. and R. J. Behm, "The role of atomic ensembles in the reactivity of bimetallic electrocatalysts," Science 293, p. 1811–1814, 2001.
[105] J. Xu, "Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation," Journal of the American Chemical Society 132, p. 10398–10406, 2010.
[106] L. Prati and M. Rossi, "Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols," Journal of Catalysis 176 (2), p. 552–560, 1998.
[107] M. Chen, D. Kumar, C. W. Yi and D. W. Goodman, "The promotional effect of gold in catalysis by palladium-gold," Science 310, p. 291–293, 2005.
[108] H. Okamoto and T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., Ohio, USA: ASM International, 1990.
[109] T. Wei, J. Wang and D. W. Goodman, "Characterization and chemical properties of Pd-Au alloy surfaces," The Journal of Physical Chemistry C 111, p. 8781–8788, 2007.
[110] A. Low and V. Bansal, "A visual tutorial on the synthesis of gold nanoparticles," Imaging and Intervention Journal 6 (1), p. e9, 2010.
[111] L. F. Hohnstedt, B. O. Miniatas and S. M. C. Waller, "Aqueous Sodium Borohydride Chemistry. The Colnage Metals, Copper, Silver, and Gold.," Anal. Chem. 37 (9), p. 1163–1164, 1965.
[112] S. G.-d. Pedro, M. Puyol, D. Izquierdo, I. Salinas and J. Alonso, "Synthesis of MUA-protected gold nanoparticles in microfluidic devices with in situ UV-vis characterization," Ibersensor, Lisbon, Portugal, 2010.
[113] H. Cheng and K. Scott, "Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide?," Applied Catalysis B: Environmental 108-109, p. 140–151, 2011.
[114] S. Yakabe, "One-Pot System for Reduction of Epoxides Using NaBH4, PdCl2 Catalyst, and Moist Alumina," Synthetic Communications 40 (9), p. 1339–1344, 2010.
[115] D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Berkeley: Cambridge University, 1999.
[116] C. H. Wang, T. E. Hua and C. C. Chien, "Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction," Materials Chemistry and Physics 106, p. 323–329, 2007.
[117] C. H. Wang, C. J. N. Liu, C. L. Wang, T. E. Hua, J. M. Obliosca, K. H. Lee, Y. Hwu, C. S. Yang, R. S. Liu, H. M. Lin, J. H. Je and G. Margaritondo, "Optimizing the size and surface properties of polyethylene glycol (PEG)–gold nanoparticles by intense x-ray irradiation," Journal of Physics D: Applied Physics 41, p. 195301, 2008.
[118] C. Wang, Y. Fang, Y. Xia, J. Xu, G. Ren and J. Fen, "Synthesis of Gold Nanoparticles Using Polyethyleneglycol-Sodium Dodecyl Sulfate," in American Institute of Chemical Engineers: Annual Meeting, Cincinnati, Ohio, 2005.
[119] B. G. Ershov and A. V. Gordeev, "A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2," Radiation Physics and Chemistry 77 (8), p. 928–935, 2008.
[120] M. Kumar, L. Varshney and S. Francis, "Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix," Radiation and Chemistry 73, p. 21–27, 2005.
[121] Y. C. Yang, C. H. Wang, Y. K. Hwub and J. H. Je, "Synchrotron X-ray synthesis of colloidal gold particles for drug delivery," Materials Chemistry and Physics 100, p. 72–76, 2006.
[122] D. R. Crow, Principles and Applications of Electrochemistry, 4th ed., Boca Raton, Florida: Chapman & Hall, 1994.
[123] C. T. Lu, "The Synthesis and Characterization of Nano-hybrid Noble Metals/N doped TiO2/MWCNTs Electrocatalysts," Master Thesis. Taiwan, Taipei: Tatung University, Department of Materials Engineering, 2014.
[124] J. Hodkiewicz, "Characterizing carbon nanomaterials: Raman spectroscopy can detect small changes in the structural morphology of carbon nanomaterials, making it an ideal solution for material sciences," Laboratory Equipment, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top