跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張力中
研究生(外文):Li-Chung Chang
論文名稱:粗糙度模擬、嵌入物性質與應力狀態對硬度量測之影響
論文名稱(外文):The Effects of Roughness Type Simulation, Inclusion Properties and Residual Stress State on the Hardness of Materials
指導教授:魏哲弘
指導教授(外文):Chehung Wei
口試委員:魏哲弘
口試委員(外文):Chehung Wei
口試日期:2015-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:106
中文關鍵詞:材料非等向性塑性性質彈性性質殘留應力硬度
外文關鍵詞:anisotropyplastic propertyelastic propertyresidual stresshardness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
材料機械性質影響應用與設計的使用,因此了解影響這些性質的因素,將有助於正確評估材料機械性質及其應用。本研究利用有限元素法,探討表面粗糙度與內應力如何影響材料的硬度。在表面粗糙度方面,探討不同尺度粗糙度底材覆蓋薄膜時,粗糙度形態與大小對整體硬度的影響。結果顯示,在平均粗糙度相同時,規則粗糙度所產生之硬度大於不規粗糙度之硬度;而在相同粗糙度形態時,粗糙度值越大,其硬度值越大。此結果顯示,當模擬材料粗糙度使用規則粗糙度形態將高估其真實硬度值;且材料表面越粗糙,其硬度值越高。
除表面粗糙度外,殘留應力也是影響硬度性質的重要因素。本研究利用預加應力,探討在雙軸預應力下,材料不同彈性性質與塑性性質如何影響硬度。彈性性質探討各向等向、橫向等向及正交等三種性質;塑性性質探討完美硬化及動態硬化等兩種塑性組成率。結果顯示,在不同雙軸預應力下,預應力對硬度量測影響不大。因此硬度在不同雙軸應力下可視為定值。雖然如此,在不同壓痕深度量測時,材料的彈塑性性質對量測硬度仍有些許影響。整體而言,材料的彈性性質造成硬度變化量大於其塑性性質。其彈性性質影響依序為橫向等向大於正交大於各向等向;而塑性性質影響則是動態硬化變化量大於完美塑性。此結果顯示雖然在雙軸應力下的硬度不受內應力影響,然而不同彈塑性性質仍有些許差異,這些結果將有助於未來深入研究硬度的量測。
The mechanical properties of material are important in the application or design in a product. Therefore the correct assessment of mechanical properties will improve the overall selection process. In the thesis, we utilize finite element method (FEM) to investigate two issues of hardness in mechanical properties: how roughness and internal stress affect the hardness. In roughness, two types of silicon substrate roughness (regular and random) with various magnitude of roughness were deposited with diamond-like carbon films. The hardness was measured via nanoindentation. The results show that the hardness in regular roughness substrate tends to be higher than that in random roughness under same average roughness. This indicates that if the roughness is modeled as regular distribution, the hardness is overestimated. Meanwhile the hardness in large roughness substrate is higher than the small roughness counterpart.
Apart from substrate roughness, the effect of internal stress in hardness is also investigated. The effect of internal stress of hardness is investigated by varying different ratio of biaxial stress. To clarify the constitutive effect, three different elastic materials with isotropic, transversely isotropic and orthotropic constitutive laws are proposed coupled with perfect-plasticity and kinematic hardening plastic constitutive behaviors. The results show under general loading conditions, the internal stress has little effect on hardness measurement. However, there exists some discrepancies in hardness measurement in elastic and plastic loading. For hardness variation, elastic deformation seems to exhibit larger impact than that in plastic deformation. In different elastic constitutive laws the order of variation in hardness is transversely isotropic > orthotropic > isotropic. For plastic constitutive laws, hardness in kinematic hardening has bigger variation than that in perfect-plasticity. Even though the internal stress does not play a critical role in hardness, the material anisotropy is critical in hardness measurement.
誌謝 i
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 奈米壓痕試驗(nanoindentation test) 3
1.2.2 殘留應力(Residual stress) 4
1.2.3 嵌入物-奈米碳管 5
1.3 研究動機與目的 6
1.4 本文架構 7
第二章 基礎理論與有限元素 9
2.1 有限元素 9
2.1.1 有限元素法 9
2.1.2 幾何設定 11
2.2 類鑽碳膜的機械性質 14
2.2.1 奈米壓痕試驗 14
第三章 不同粗糙度模擬方式對硬度的影響 17
3.1 模型建立與參數設定 17
3.1.1 粗糙度 18
3.1.2 參數設定 19
3.2 利用奈米壓痕試驗量測硬度 25
3.2.1 不同粗糙度對硬度之影響 25
3.2.2 同一粗糙度下不同粗糙度模擬方式之硬度比較 30
3.2.3 不同粗糙度模擬方式與粗糙度大小對硬度之影響 35
3.3 結論 38
第四章 奈米碳管不同排列方式及機械性質對硬度之影響 39
4.1 模型建立與參數設定 39
4.2 利用奈米壓痕試驗量測硬度 43
4.2.1 不同材料性質的奈米碳管之間的比較 43
4.2.2 不同濃度的奈米碳管之間的比較 46
4.3 結論 48
第五章 不同比例雙軸應力下對等向與非等向性材料硬度之影響 49
5.1 等向性與非等向性材料 51
5.1.1 正交性材料(orthotropic materials) 52
5.1.2 橫向等向性材料 53
5.2 塑性性質 55
5.2.1 完美塑性(Perfect Plastic) 56
5.2.2 動態硬化(Kinematic Hardening) 56
5.3 模型建立與參數設定 57
5.3.1 下壓深度 57
5.3.2 模型建立 59
5.3.3 參數設定 62
5.4 利用奈米壓痕試驗量測硬度 67
5.4.1 完美塑性 67
5.4.2 動態硬化 72
5.4.3 參數探討 77
5.5 結論 96
第六章 總結 97
參考文獻
1.S. Aisenberg, S. Ronald, (1971) Ion-beam deposition of thin films of diamond-like carbon. Applied Physics. 42(7):2953-2958.
2.F. Piazz, D. Grambole, D. Schneider, C. Casiraghi, C. Ferrari, J. Robertson, (2005) Protective diamond-like carbon coatings for future optical storage disks. Diamond Relate Mater, 14:994– 999.
3.A.C. Ferrari, (2004) Diamond-like carbon for magnetic storage disks. Surface and Coatings Technology. 180/181:190-206.
4.J. Robertson, (2001) Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films. 383:81-88.
5.N. Boutroy, Y. Pernel, J.M. Rius, F. Auger, H.J. Bardeleben, J.L. Cantin, F. Abel, A. Zeinert, C. Casiraghi, A.C. Ferrari, J. Robertson, (2006) Hydrogenated amorphous carbon film coating of PET bottles for gas diffusion barriers. Diamond Relate Mater. 15:921 – 927.
6.J.K. Luo, (2004) Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure. J. Applied Physics. Lett. 85:5748-5750.
7.P.R. Goglia, J. Berkowitz, J. Hoehn, A. Xidis, L. Stover, (2001) Diamond-like carbon applications in high density hard disc recording heads. Diamond Relate Mater. 10:271-277.
8.M. Alaluf, J. Appelbaum, N. Croitoru, (1998) Properties of GaAs solar cells coated with diamond-like carbon films. Thin Solid Films. 320:159-162.
9.V. Bursikova, P. Sladek, P. St’ahel, L. Zajickova, (2002) Improvement of the efficiency of the silicon solar cells by silicon incorporated diamond-like carbon antiflective coatings. J non-cryst solids. 299/302:1147-1151.
10.T.I.T. Okpalugo, A.A. Ogwu, P.D. Maguire, J.A.D. McLaughlin, (2004) Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials. 25:239-245.
11.G. Thorwarth, B. Saldamli, F. Schwarz, P. Jürgens, C. Leiggener, R. Sader, M. Haeberlen, W. Assmann, B. Stritzker, (2007) Biocompatibility of doped diamond-like carbon coatings for medical implants. Plasma Process. Polym. 4: S364-S368
12.C. Zhow, J. Kong, E. Yenilmez, H. Dai, (2000) Modulated chemical doping of individual carbon nanotubes. Science. 290:1552-1555.
13.K.H. An, Y.H. Lee, (2006) Electronic structure engineering of carbon nanotubes. Nanotechnology. 1:115-138.
14.E.S. Hwang, C. Cao, S. Hong, H.J. Jung, C.Y. Cha, J.B. Choi, (2006) The DNA hybridization assay using single-walled carbon nanotubes as ultrasensitive, long-term optical labels. Nanotechnology. 17:3442-3447.
15.A.C. Fischer-Cripps, (2002) Nanoindentation. Mechanical Engineering Series. Springer-Verlag. ISBN 0-387-95394-9.
16.D. Tabor, (1996) Indentation hardness: fifty years on a personal view. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 74(5):1207-1212.
17.I.N. Sneddon, (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a Punch of arbitrary profile. International Journal of Engineering Science. 3:47–57.
18.R. B. King, (1987) Elastic analysis of some punch problems for a layered. International Journal of Solids and Structures. 23:1657-1664.
19.J.D. Bressan, A. Tramontin, C. Rosa, (2005) Modeling of nanoindentation of bulk and thin film by finite element method. Wear. 258(1-4 SPEC.ISS.):115-122.
20.B. Bhushan, (1999) Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5nm:recent developments. Diamond Relate Mater. 8:1985-2015.
21.X.L. Peng, T.W. Clyne, (1998) Mechanical stability of DLC films on metallic substrates: Part I-Film structure and residual stress levels. Thin Solid Films.312:207-218.
22.W. Zang, A. Tanaka, K. Wazumi, Y. Koga, (2002) Structure, mechanical and tribological properties of diamond-like carbon films prepared under different substrate bias voltage. Diamond Relate Mater. 11:1837-1844.
23.J. Haider, M. Rahman, B. Corcoran, M.S.J. Hashmi, (2005) Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis. Journal of Materials Processing Technology. 168 (1):36-41.
24.C. Wei, J.Y. Yen, (2007) Effect of film thickness and interlayer on the adhesion strength of diamond like carbon films on different substrates. Diamond Relate Mater. 16:1325-1330.
25.C. Wei, Y.S. Wang, F.C. Tai, (2008) The role of metal interlayer on thermal stress, film structure, wettability and hydrogen content for diamond like carbon films on different substrate. Diamond Relate Mater. 18:407-412.
26.C. Donnet, J. Fontaine, T. Le Mogne, M. Belin, C. Heau, J. P Terrat., E .Vaux, G. Pont (1999) Diamond-like carbon-based functionally gradient coatings for space. tribology Surface and Coatings Technology. 120/121:548-554.
27.R. Gilmore, R. Hauert, (2000) Comparative study of the tribological moisture sensitivity of Si¬ free and Si-containing diamond-like carbon films. Surface and Coatings Technology. 133/134:437-442.
28.L. Hultman, J. Neidhardt, N. Hellgren, H. Sjostrom, J. E. Sundgren, (2003) Fullerene-like carbon nitride: A resilient coating material. MRS Bulletin 28: 194-202.
29.C P. Lungu, (2005) Nanostructure influence on DLC-Ag tribological coatings. Surface and Coatings Technology. 200:198-202.
30.D.Y. Wang, C.L. Chang, (2001) Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrates. Diamond Relate Mater. 10:1528-1534.
31.Ch Laurent, A Peigney, E Flahaut, A Rousset, (2000) Synthesis of carbon nanotubes–Fe–Al2O3 powders: Influence of the characteristics of the starting Al1.8Fe0.2O3 oxide solid solution. Journal of Materials Research. Bull. 35:661–673.
32.E Flahaut, A Peigney, Ch Laurent, Ch Marliere, F Chastel, A Rousset, (2000) Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mate. 48:3803-3812.
33.D. S . Lim, J. W. An, H. J. Lee, (2002) Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear. 252:512-517.
34.H .Hu, G .Chen, J .Zhang, (2008) Facile synthesis of CNTs-doped diamond-like carbon film by electrodeposition. Surface and Coatings Technology. 202:5943-5946.
35.S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, S.H. Hong, (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Mater. 53:793–797.
36.S.R. Dong, J.P. Tu, X.B. Zhang, (2001) An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Materials Science and Engineering A. 313:83–87.
37.M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films. 312 (1-2):240-248.
38.M. Ben Tkaya, H. Zahouani, S. Mezlini, Ph. Kapsa, M. Zidi, A. Dogui, (2007) The effect of damage in the numerical simulation of a scratch test. Wear. 263:1533-1539.
39.W.C. Oliver, G.M. Pharr, (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 7:1564-1992.
40.B. Shiari, R.E. Miller, D.D. Klug, (2007) Multiscale simulation of material removal processes at the nanoscale. Journal of the Mechanics and Physics of Solids. 55:2384-2405.
41.Tai-Ching Wu, “A Finite Element Study on the Effects of Different Stress States on the Mechanical Properties of Thin Films,” Master Thesis, Tatung University, Taipei Taiwan 2013.
42.Ghassan A. Al-Kindi, Bijan Shirinzadeh, (2009) Feasibility assessment of vision-based surface roughness parameters acquisition for different types of machined specimens, Image and Vision Computing, 27:444-458.
43.H. Pelletier, J. Krier, A. Cornet, P. Mille, (2000) Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Films. 379 (1-2):147-155.
44.Jui-Feng Yang, “ The Effects of Inclusions And Resisual Strsess on The Mechanical And Tribological Properties of Diamond-Like Carbons Films,” Master Thesis, Tatung University, Taipei Taiwan, 2010.
45.K. L Johnson, “The correlation of indentation experiments,” Journal of the Mechanics and Physics of Solids, 18, 115-126,1970
46.S. Suresh, A.E. Giannakopoulos, “A New method for estimating residual stress by instrumented sharp indentation,” Acta Materialia, 46, 5755-5767, 1998.
47.S. Suresh, A.E. Giannakopoulos, “Determination of elastoplastic properties by instrumented sharp indentation,” Scripta Materialia, 40, 1191-1198, 1999.
48.Y.H. Lee, D. Kwon, “Residual stresses in DLC/Si and Au/Si system: Application of a stress-relaxation model to the nanoindentation technique,” Journal of Materials Research, 17,901-906, 2002.
49.Y.H. Lee, D. Kwon, “Measurement of residual-stress effect by nanoindentation on elastically stained (100) W,” Scripta Materialia, 49, 459-465, 2003
50.Eduardo W. V. Chaves, “Notes on Continuum Mechanics, ” Ciudad Real-Spain, October 2012
51.Matthew A. Hopcroft, Member, IEEE, William D. Nix, and Thomas W. Kenny, “What is the Young’s Modulus of Silicon? ” Journal of Micro Electro Mechanical Systems, 19, 2, April 2010
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top