跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宜春
研究生(外文):Yi-Chun Li
論文名稱:以觀察器為基礎針對具有時間延遲和截止區輸入的非線性不確定性系統之模糊滑動模式控制
論文名稱(外文):OBSERVER-BASED FUZZY SLIDING MODE CONTROL OF NONLINEAR UNCERTAIN SYSTEMS WITH TIME DELAY AND DEAD-ZONE INPUT
指導教授:江江盛
指導教授(外文):Chiang-Cheng Chiang, Chiang-Cheng
口試委員:江江盛
口試委員(外文):Chiang-Cheng Chiang, Chiang-Cheng
口試日期:2015-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:37
中文關鍵詞:滑動模式控制模糊邏輯系統時間延遲截止區輸入觀察器
外文關鍵詞:sliding mode controlfuzzy logic systemtime delaydead-zone inputobserver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文處理以觀察器為基礎針對具有狀態時間延遲以及未知截止區輸入的非線性系統之模糊滑動模式控制問題。為了處理此類非線性系統,模糊邏輯系統及更新法則分別被用來近似未知系統函數和估計未知參數。同時,為了準確地估計不可被量測到的狀態,一個以狀態濾波器為基礎的觀察器將被建構。一個基於滑動面的滑動模式控制被應用來設計此控制器。藉由李亞普諾夫穩定度定理,所提出的控制器可以保證整個閉迴路系統的穩定度。最後,以模擬例題來證明所提出之控制方法的有效性。
The thesis deals with the problem of observer-based fuzzy sliding mode control for nonlinear systems with state time-delays and unknown dead-zone input. To tackle these nonlinear systems, the fuzzy logic systems and adaptive laws are applied to approximate the unknown system functions and estimate unknown parameters, respectively. To accurately estimate the states which are not available, the observer based on state variable filters is constructed. In order to design the controller, a sliding mode control based on sliding surface is utilized. The proposed controller ensures the stability of the whole closed-loop systems according to the Lyapunov stability theorem. Finally, a simulation example is illustrated to demonstrate the effectiveness of this proposed control method.
Acknowledgments i
English Abstractii
Chinese Abstract .iii
Table Of Contents iv
List Of Figures v
Chapter
I. Introduction 1
II. Problem Statement and Preliminaries 4
2.1 System Description 4
2.2 Description of Fuzzy Systems8
III. Controller Design and Stability Analysis .10
3.1 Observer Design 10
3.2 Controller Design 18
IV. Results of Simulation25
V. Conclusion 33
References 34
[1] L. D. Machado, J. DeNegri, and A. B. Cunha,“Experimental implementation of the cascade controller with adaptive dead-zone compensation applied to a hydraulic robot,” IEEE Latin Amer. Robotic Symp., Natal, Rio Grande do Norte, BRAZIL, pp. 59–64, Oct. 2008.
[2] B. Magyar, C. Hős, and G. Stépán,“Influence of control valve delay and dead zone on the stability of a simple hydraulic positioning system,” Math. Problems in Eng., vol. 2010, pp. 1–15, 2010.
[3] D. Gebler and J. Holtz,“Identification and compensation of gear backlash without output position sensor in high-precision servo systems,”in Proc. of the 24th Annu. Conf. of the IEEE Ind. Electron. Soc., Aachen, GERMANY, vol. 2, pp. 662–666, Sep. 1998.
[4] C. J. Cheng, “Decentralized feedback control of uncertain cellular neural networks subject to time-varying delays and dead-zone input,” Math. and Comput. Modelling, vol. 49, pp. 386–392, Jan. 2009.
[5] S. Tong and Y. Li,“Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs,”IEEE Trans. on Fuzzy Syst., vol. 21, no. 1, pp. 134–146, Feb. 2013.
[6] D.V. Ramana Reddy, A. Sen, and G.L. Johnston,“Time delay induced death in coupled limit cycle oscillators,”Physical Review Lett., vol. 80, pp.5109–5112, Jun. 1998.
[7] C. Gan, R. Todd, and J. Apsley, “Time-delay effects in a HIL aircraft power system emulator,” 2013 IEEE Energy Conv. Congr. and Exposition, Denver, CO, USA, pp. 20–26, Sep. 2013.
[8] S. L. Wu, K. L. Li, and T. Z. Huang,“Exponential stability of static neural networks with time delay and impulses,“ IET Control Theory & Applicat., vol. 5, no. 8, pp. 943–951, May 2011.
[9] K. Natori, T. Tsuji, and K. Ohnishi, “Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay.” IEEE Trans. on Ind. Electron., vol. 57, no. 3, pp. 1050–1062, Mar. 2010.
[10] J. Wei, Y. Hu, and M. Sun, “Adaptive iterative learning control for a class of nonlinear time-varying systems with unknown delays and input dead-zone,” IEEE/CAA J. of Automatica Sinica, vol. 1, no. 3, pp. 302–314, Jul. 2014.
[11] C. C. Hua and S. Ding, “Model following controller design for large-scale systems with time-delay interconnections and multiple dead-zone inputs,” IEEE Trans. on Automat. Control, vol. 56, no. 4, pp. 962–968, Apr. 2011.
[12] Y. Ariba and F. Gouaisbaut, “Construction of Lyapunov-Krasovskii functional for time-varying delay systems,” 47th IEEE Conf. on Decision and Control, Cancun, MEXICO, pp. 3995–4000, Dec. 2008.
[13] Y. Uchimura and D. Minagawa, “ output feedback controller based on complete quadratic Lyapunov-Krasovskii functional for time delay systems,”2013 IEEE Int. Conf. on Mechatronics, Vicenza, pp. 892–897, Mar. 2013.
[14] T. C. Chu, T. C. Lin, and V. E. Balas, “Observer-based indirect adaptive supervisory control for unknown time delay system,” 2014 IEEE Int. Conf. on Fuzzy Syst., Beijing, CHINA, pp. 1883–1890, Jul. 2014.
[15] C. W. Tao, M. L. Chan, and W. Y. Wang, “Robust control of the mismatched systems with the fuzzy integral sliding controller,” 2003 IEEE Int. Conf. on Syst. Man and Cybernetics, vol. 4, pp. 3657–3662, Oct. 2003.
[16] C. M. Hong, C. H. Huang, and F. S. Cheng, “Sliding mode control for variable-speed wind turbine generation systems using artificial neural network,”ICAE 2014 Int. Conf. on Appl. Energy, vol. 61, pp. 1626–1629, 2014.
[17] N. Uchiyama, S. Sano, and A. El Khalick M,“Sliding mode contouring control for biaxial feed drive systems with a nonlinear sliding surface,”HPC2014 6th CIRP Int. Conf. on High Performance Cutting, vol. 14, pp. 506–510, 2014.
[18] Y. Li, S. Tong, T. Li, and X. Jing, “Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach,” Fuzzy Sets and Syst., vol. 235, pp. 1–24, 2014.
[19] S. Tong, C. Liu, and Y. Li, “Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties,” IEEE Trans. on Fuzzy Syst., vol. 18, no. 5, pp. 845–861, Oct. 2010.
[20] S. Sui, S. Tong, and Y. Li, “Adaptive fuzzy decentralised output feedback control of pure-feedback large-scale stochastic non-linear systems with unknown dead zone,” IET Control Theory & Applicat., vol. 8, no. 7, pp. 488–502, May 2014.
[21] L. X. Wang, A course in fuzzy systems and control, Englewood Cliffs, NJ: Prentice-Hall, 1997.
[22] C. C. Kung and T. H. Chen, “Observer-based indirect adaptive fuzzy integral sliding mode control with state variable filters,” Fuzzy Sets and Syst., vol. 155, no. 2, pp. 292–308, 2005.
[23] C. C. Chiang and C. C. Hu, “Output tracking control for uncertain underactuated systems based on fuzzy sliding mode control approach,” 2012 IEEE Int. Conf. on Fuzzy Syst. , Brisbane, QLD, AUSTRALIA, pp. 1–8, Jun. 2012.
[24] T. P. Zhang and S. S. Ge, “Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs,” Automat., vol. 43, pp. 1021–1033, 2007.
[25] C. C. Hua, Q. G. Wang, and X. P. Guan, "Adaptive tracking controller design of nonlinear systems with time delays and unknown dead-zone input," IEEE Trans. Automat. Control, vol. 53, no. 7, pp. 1753–1759, Aug. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文