跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柄豪
研究生(外文):BING-HAO HUANG
論文名稱:kinect 感測之機器人手部軌跡追蹤運動控制
論文名稱(外文):KINECT SRNSING THE ROBOT HANDMOTION TRAJECTORY ON TRACKINGCONTROL
指導教授:游文雄
指導教授(外文):Wen-Shyong Yu
口試委員:游文雄
口試委員(外文):Wen-Shyong Yu
口試日期:2015-07-30
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:76
中文關鍵詞:Kinect感應器3D手勢識別手的動作
外文關鍵詞:hand action3D hand gesture recognitionKinect sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們擬使用Kinect感測器之3D手勢辨識系統產生人類手勢軌跡來實現機器人手勢與人類手勢一致運動。
相較於整個人類身體的動作時,人類手勢行為是一項比較複雜的肢體運動,且也很容易受到運動學模式誤差影響。
因此,實現機器人手勢與人類手勢一致運動便成為有趣且具挑戰的問題。
本文使用Kinect感測器提供3D手勢辨識系統來處理人類手勢行為之腕關節軌跡順逆運動學。
針對手腕關節之順逆運動學,本文提出人與Kinect感測器之距離量測,藉此量測人類與機器人的手勢行為及腕關節軌跡的不一致性。
即使只有人類與機器人的腕關節軌跡有一致性而非整支手臂,本文透過逆運動學也可以讓手勢僅有些微不同也可以有效辨識。
本文藉由五位成人的實驗,來驗證所提3D手勢辨識系統可以讓人類與機器人的手勢行為及腕關節軌跡,在影像發生變形或量化改變下,或是光線不足的情況下,其準確性可達99
In this thesis, Kinect sensor is used to build a robust 3D hand gesture recognition system in hand action tracking such that the hand of the robot in the remote site can duplicate the actions that of the human. As compared to actions of the entire human body, the hand action behaves more complex articulations and are more easily affected by kinematics modeling errors. It is thus a very attractive and challenging problem to transfer the hand gestures of the human after recognition to that of the robot. The robust hand gesture recognition is proposed to handle the kinematics and inverse kinematics from the hand wrist trajectory obtained by the Kinect sensor.
According to the hand inverse kinematics, the distance metric between human and the Kinect sensor is used to measure the dissimilarity between human and robot by hand shapes and wrist trajectory. As it only matches the wrist tip parts while not the whole hand, it can better distinguish the hand gestures of slight differences by inverse kinematics. The experiments demonstrate that the proposed hand gesture recognition system is accurate (a 99.2% mean accuracy on a challenging 5-gesture dataset), can work in distortions and orientation or scale changes, and uncontrolled environments (cluttered backgrounds and lighting conditions).
1 INTRODUCTION 1
1.1 Background and Motivation1
1.2 Overview of the Research System 2
1.3 Review of the literature2
1.4 Structure of the Thesis 5
2 DEVICE DESCRIPTION 6
2.1 Software Equipment 7
2.1.1 VisualStudio 7
2.2 Hardware Equipment 8
2.2.1 RoboBuilder 8
2.2.2 RS-232 14
2.2.3 Kinect 18
3 WORKING RANGE TEST 5
3.1 A X-axis working range 6
3.2 A Z-axis working range 4
3.3 Elbow working range 7
3.4 wCK speed test 10
4 ROBOT ARM SYSTEM KINEMATICS DERIVATION 13
5 ROBOT ARM SYSTEM KINEMATICS DERIVATION 16
5.1 Robot Arm Parameters 17
5.2 Inverse Kinematics 18
6 KINEMATIC MATLAB SIMULATION AND ACTUAL VERIFICATION
22
6.1 Circular trajectory is constant for X 23
6.2 Circular trajectory is constant for Y 26
6.3 Circular trajectory is constant for Z 29
7 Results of experimental 32
8 Conclusions and Future Prospects 39
8.1 Conclusions 9
8.2 Future Prospects 40
[1] L. Math, Member, A. Caverzasi,F. Saravia , G. Gomez , J. P. Pedroni”Detection
of Human-Robot Collision Using Kinetic” IEEE LATIN AMERICA TRANSACTIONS,
VOL. 11, NO. 1, FEB. 2013
[2] J. Han, L. Shao, D. Xu, and J. Shotton,”Enhanced computer vision with Microsoft
Kinect sensor: A review,” IEEE Trans. Cybern., vol. 43, no.5, pp.
1318-1334, Oct. 2013.
[3] Zhou Ren, Junsong Yuan, Jingjing Meng, and Zhengyou Zhang,”Robust Part-
Based Hand Gesture Recognition Using Kinect Sensor” IEEE TRANSACTIONS
ON MULTIMEDIA, VOL. 15, NO. 5, AUGUST 2013.
[4] Hubert P. H. Shum, Edmond S. L. Ho, Yang Jiang, and Shu Takagi,”Real-
Time Posture Reconstruction for Microsoft Kinect” IEEE TRANSACTIONS
ON CYBERNETICS, VOL. 43, NO. 5, OCTOBER 2013.
[5] M. Sun, P. Kohli, and J. Shotton,”Conditional regression forests for human pose
estimation,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR),
Jun. 2012, pp. 3394-3401.
[6] H. P. H. Shum and E. S. L. Ho, ”Real-time physical modelling of character
movements with Microsoft Kinect,” in Proc. ACM Symp.Virtual Reality Softw.
Technol. (VRST), 2012, pp. 17-24.
[7] L. Hoyet, R. McDonnell, and C. O´ Sullivan,”Push it real: Perceiving causality
in virtual interactions,” ACM Trans. Graph., vol. 31, no. 4, pp.90:1-90:9, Jul.
2012.
[8] A. Fern´ndez-Baena, A. Susin, and X. Lligadas,”Biomechanical validation of
upper-body and lower-body joint movements of Kinect motion capture data
for rehabilitation treatments,”in Proc. 4th Int. Conf. Intell.Netw. Collaborative
Syst. (INCoS), Sep. 2012, pp. 656-661.
[9] J. Wang, Z. Liu, Y. Wu, and J. Yuan, ”Mining actionlet ensemble for action
recognition with depth cameras,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, Providence, RI, USA, 2012.
[10] Shohin Mukherjee ,Deepak Paramkusam, Santosha K. Dwivedy,”Inverse Kinematics
of a NAO Humanoid Robot using Kinect to Track and Imitate Human
Motion”, International Conference on Robotics, Automation, Control and
Embedded Systems - RACE 2015 18-20 February 2015, Hindustan University,
Chennai, India.
[11] Liao Wu, Xiangdong Yang, Dongjing Miao, Ying Xie, and Ken Chen,”Inverse
Kinematics of a Class of 7R 6-DOF Robots with Non-SphericalWrist”, Proceedings
of 2013 IEEE International Conference on Mechatronics and Automation
August 4-7, Tianjin, China.
[12] Bingtuan Gao, Honggang Song, Lixia Sun, Yi Tang, ”Inverse Kinematics and
Workspace Analysis of a Bio-inspired Flexible Parallel Robot”, Proceedings ofthe 2013 IEEE International Conference on Cyber Technology in Automation,Control and Intelligent Systems May 26-29, 2013, Nanjing, China.
[13] J. Victor Nunez, Abraham Briseno, Dora A. Rodriguez, J. Manuel Ibarra, Victor
M. Rodriguez,”Explicit analytic solution for inverse kinematics of Bioloid
humanoid robot”, 2012 Brazilian Robotics
[14] Jianqing Peng, Wenfu Xu, Zhiying Wang, Deshan Meng,”Analytical Inverse
Kinematics and Trajectory Planning for a 6DOF Grinding Robot”, Proceeding
of the IEEE International Conference on Information and Automation
Yinchuan, China, August 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top