跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴婕恩
研究生(外文):Chieh-En Lai
論文名稱:長期低劑量游離輻射暴露族群之循環系統死亡風險研究
論文名稱(外文):Circulatory disease mortality in a population with protracted low-dose radiation exposure
指導教授:林逸芬
指導教授(外文):I-Feng Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:公共衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:長期低劑量游離輻射輻射鋼筋污染建築物循環系統死亡風險
外文關鍵詞:protracted low-dose radiation exposureradiation-contaminated buildingcirculatory disease mortality risks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:
過去在動物實驗及接受放射治療病患的研究中顯示,高劑量的輻射暴露可能會造成心臟與大血管的受損,導致急性心血管的不良反應,如急、慢性心包膜炎、加速動脈硬化症、心肌纖維化等作用。近幾年有愈來愈多的研究探討低劑量輻射暴露與晚期循環疾病間的關係,如日本原子彈爆炸倖存者及各國的職業輻射暴露研究,但其結果仍未有一致的結論。本研究的目的在探討台灣輻射鋼筋污染族群(Taiwan radiation-contaminated building cohort, Taiwan RCB cohort)輻射暴露劑量與循環系統死亡風險之關係。
方法:
本研究以RCB族群具個人輻射重建暴露劑量之居民為研究對象,估算暴露族群之標準化死亡比(Standardized Mortality Ratio; SMR),並校正性別及初次輻射暴露年齡後以Cox Proportional Hazard model與Poisson log-linear model估計循環系統疾病死亡相對風險及劑量效應關係。另外為了和國外類似族群研究比較,使用Excess Relative Risk model估計額外相對風險。
結果:
截至2011年底,追蹤台灣RCB族群6,242人共有326人死亡,70人死於循環系統疾病,35人死於中風。與相同地區未暴露族群比較,標準化死亡比於全死因(SMR=7.04)、循環系統疾病(SMR=5.92)、中風(SMR=6.55) 顯示死亡率皆較未暴露族群高。於不同統計模式下,當輻射暴露劑量為連續變項時,在全死因、循環系統疾病與中風的死亡相對風險之點估計值皆為正。平均每增加100毫西弗,不同模式所估算的總死亡額外相對風險(ERR)從最保守的4%(95%CI:1%~8%)到最大的10%(95%CI:<0~21%),循環系統死亡額外相對風險從4% (95%CI:<0~12%)到30%(95%CI:<0~63%)。當暴露劑量以類別型態進行分析時,可觀察到劑量效應關係。
結論:
本研究結果顯示,隨著暴露劑量增加,台灣輻射鋼筋污染建物暴露族群之全死因、循環系統及中風的死亡風險亦有增加的趨勢,然因追蹤時間較短,死亡發生個案數偏少,仍需繼續長期追蹤觀察,以提供更多長期低劑量輻射暴露對健康影響之證據。
Background and purpose:
Previous studies have shown that acute or high dose radiation exposure may increase circulatory disease mortality. Chronic low-dose radiation exposure on the risks of circulatory disease remains to be explored. The purpose of this study is to assess circulatory disease mortality risks in a population with protracted low-dose radiation exposure.
Methods:
Analyses included 6,242 subjects with individually estimated radiation doses in the Taiwan radiation-contaminated building cohort (Taiwan RCB cohort) follow-up data from 1985 to 2011. Standardized mortality ratios were calculated to compare circulatory disease mortality in the RCB cohort with that of the general population. The study assesses the dose response relationship between the radiation exposure and circulatory disease mortality by Cox proportional hazard model, Poisson log-linear model and excess relative risk model.
Results:
Among a total of 326 deaths occurred, 70 subjects died of circulatory disease and 35 died of stroke. Compared to the reference population, the RCB cohort had higher mortality of all cause, circulatory disease and stroke. Doses are associated with an elevated mortality risk of all cause, circulatory disease and stroke in different statistical models. The estimated relative risk per 100mSv was 1.0 (95% CI: 1.01 to 1.08) for all cause mortality and 1.04 (95% CI: 0.96 to 1.12) for circulatory disease mortality. We observed a similar trend in the dose-response effects when cumulative dose was treated as categorical variables yet not statistically significant. As the cohort is still young thus number of cardiovascular mortality events is small, further follow-up of the study cohort is necessary.
中文摘要...i
英文摘要...iii
目錄...v
圖目錄...vii
表目錄...viii
第一章緒論...1
第一節研究背景與動機...1
第二節研究目的...3
第二章文獻探討...4
第一節游離輻射與健康效應...4
第二節游離輻射與循環系統疾病或死亡風險研究...5
壹、日本原子彈爆炸倖存者研究:一般民眾之急性輻射暴露...6
貳、環境輻射暴露研究:一般居民之慢性輻射暴露...8
參、職業輻射暴露研究:工作場所之慢性輻射暴露...10
第三章材料與方法...16
第一節研究族群...16
第二節死因資料來源...16
第三節輻射暴露累積劑量估計...17
第四節分析變項...18
第五節統計分析方法...20
第四章結果...24
第一節基本資料之敘述統計...24
第二節循環系統死亡風險評估...26
第三節標準化死亡比(Standardized Mortality Ratio)...30
第四節統計分析結果之綜合整理...31
第五章討論...33
第一節風險模式假設之差異...33
第二節性別與輻射累積劑量之交互作用探討...35
第三節干擾因子...38
第四節疾病機轉...42
第五節其他輻射暴露研究...44
第六節競爭死因(Competing events)...46
第七節研究限制...49
參考文獻...50

圖目錄
Figure 1. The RCB cohort Data Collection 55
Figure 2. Strategy of Data Analysis 56
Figure 3. The Effects of low-dose radiation on All cause mortality : TCD as categorical 57
Figure 4. The Effects of low-dose radiation on Circulatory mortality : TCD as categorical 57
Figure 5. The Effects of low-dose radiation on Stroke mortality : TCD as categorical 57
Figure 6. SMR for the exposed population, 1991-2011 58
Figure 7. SMR for the exposed population by genders, 1991-2011 58
Figure 8. SMR for the exposed population by groups of radiation exposure, 1991-2011 58

表目錄
Table 1. Sub-categories and ICD codes of circulatory disease 59
Table 2. Characteristics of the Taiwan Radio-contaminated Building Cohort by genders 60
Table 3. Incidence rates by types of circulatory mortality 61
Table 4. Characteristics of the study population by types of circulatory diseases 62
Table 5. The Effects of low-dose radiation on all cause mortality : TCD as continuous 63
Table 6. The Effects of low-dose radiation on all cause mortality : TCD as categorical 63
Table 7. The Effects of low-dose radiation on circulatory mortality : TCD as continuous 64
Table 8. The Effects of low-dose radiation on circulatory mortality : TCD as categorical 64
Table 9. The Effects of low-dose radiation on stroke mortality : TCD as continuous 65
Table 10. The Effects of low-dose radiation on stroke mortality : TCD as categorical 65
Table 11. Standardized mortality ratios by genders, 1991-2011 66
Table 12. Standardized mortality ratios by groups of radiation exposure, 1991-2011 66
Table 13. Relative risks stratified by genders 67
Table 14. Estimated ERRs of low dose radiation exposure and circulatory disease 68
Table 15. Competing risk models on circulatory mortality : TCD as continuous 69
Table 16. Competing risk models on circulatory mortality : TCD as categorical 69
Table 17. Competing risk models on stroke mortality : TCD as continuous 70
Table 18. Competing risk models on stroke mortality : TCD as categorical 70
Table 19. Competing risk models on circulatory mortality :Cancer mortality as competing event 71
Table 20. Competing risk models on circulatory mortality : Cancer mortality as competing event 71
Table 21. Competing risk models on stroke mortality : Cancer mortality as competing event 72
Table 22. Competing risk models on stroke mortality : Cancer mortality as competing event 72




1. Adams, M.J., et al., Radiation-associated cardiovascular disease. Critical reviews in oncology/hematology, 2003. 45(1): p. 55-75.
2. Little, M., et al., A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiation research, 2008. 169(1): p. 99-109.
3. Stewart, F.A., et al., Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol), 2013. 25(10): p. 617-24.
4. Lee, C.K., D. Aeppli, and M.E. Nierengarten, The need for long-term surveillance for patients treated with curative radiotherapy for Hodgkin’s disease: University of Minnesota experience. International Journal of Radiation Oncology* Biology* Physics, 2000. 48(1): p. 169-179.
5. Preston, D.L., et al., Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997. Radiation research, 2003. 160(4): p. 381-407.
6. Shimizu, Y., et al., Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ, 2010. 340: p. b5349.
7. Laurent, O., et al., Relationship between occupational exposure to ionizing radiation and mortality at the French electricity company, period 1961-2003. Int Arch Occup Environ Health, 2010. 83(8): p. 935-44.
8. Kreuzer, M., et al., External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946-2008. Radiat Environ Biophys, 2013. 52(1): p. 37-46.
9. Little, M.P., et al., Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect, 2012. 120(11): p. 1503-11.
10. Cardarelli, J., II, Elliott, L., Hornung, R. and Chang, WP (1997) Proposed model for estimating dose to inhabitants of Co-60 contaminated buildings. Health Physics. 72: p. 351-360.
11. Hwang, J.-S., et al., Radiation exposure modeling for apartment living spaces with multiple radioactive sources. Health physics, 1998. 74(3): p. 379-386.
12. A. Hsieh, J.L., JJ Hwang, CC Chan, WP Chang, W, Biodosimetry using chromosomal translocations measured by FISH in a population chronically exposed to low dose-rate 60 Co γ-irradiation. International Journal of Radiation Biology, 2001. 77(7): p. 797-804.
13. Chang, W.P., et al., Cytogenetic effect of chronic low-dose, low-dose-rate γ-radiation in residents of irradiated buildings. The Lancet, 1997. 350(9074): p. 330-333.
14. Wang, J., et al., Late haematological changes in population with chronic low dose-rate radiation exposure during childhood. Br. J. Radiol, 2002. 75: p. 135-140.
15. Chen, W.-L., et al., Lenticular opacities in populations exposed to chronic low-dose-rate gamma radiation from radiocontaminated buildings in Taiwan. Radiation research, 2001. 156(1): p. 71-77.
16. Wang, J.-C., W.P. Chang, and J.-D. Wang, The effects of excessive radiation exposure on the growth of children. Chinese Journal of Public Health, 1999. 18(1): p. 3-12.
17. Chang, T.-C., et al., Effect of prolonged radiation exposure on the thyroid gland of residents living in 60 Co-contaminated rebar buildings. International journal of radiation biology, 2001. 77(11): p. 1117-1122.
18. Hwang, S.-L., et al., Estimates of relative risks for cancers in a population after prolonged low-dose-rate radiation exposure: a follow-up assessment from 1983 to 2005. Radiation research, 2008. 170(2): p. 143-148.
19. Yen, P.N., et al., Risk factors of depression after prolonged low-dose rate environmental radiation exposure. International journal of radiation biology, 2014. 90(10): p. 859-866.
20. Elgazzar, A.H. and N. Kazem, Biological effects of ionizing radiation, in The Pathophysiologic Basis of Nuclear Medicine. 2015, Springer. p. 715-726.
21. Hamada, N. and Y. Fujimichi, Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J Radiat Res, 2014. 55(4): p. 629-40.
22. Authors on behalf of, I., et al., ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP, 2012. 41(1-2): p. 1-322.
23. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP, 2007. 37.
24. Adams, M., L. Constine, and S. Lipshultz, Radiation. Cardiology. Mosby, London, 2001. 8: p. 1-8.
25. Mulrooney, D.A., et al., Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. Bmj, 2009. 339.
26. Hooning, M.J., et al., Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. Journal of the National Cancer Institute, 2007. 99(5): p. 365-375.
27. AGIR, Circulatory disease risk. Report of the independent Advisory Group on Ionising Radiation. Health Protection Agency, London. 2010.
28. Council, N.R., Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. 2006, Washington, DC: The National Academies Press. 424.
29. UNSCEAR, Biological Mechanisms of Radiaiton Actions at Low Doses: A white paper to guide the Scientific Committee's future programme of work. United Nations Scientific Committee on the Effects of Atomic Radiation: New York, 2012. 12.
30. Wong, F.L., et al., Noncancer disease incidence in the atomic bomb survivors: 1958-1986. Radiation research, 1993. 135(3): p. 418-430.
31. Ozasa, K., et al., Risk of cancer and non-cancer diseases in the atomic bomb survivors. Radiation protection dosimetry, 2011: p. ncr168.
32. Ozasa, K., et al., Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases. Radiat Res, 2012. 177(3): p. 229-43.
33. Yamada, M., et al., Noncancer disease incidence in atomic bomb survivors, 1958-1998. Radiation research, 2004. 161(6): p. 622-632.
34. Krestinina, L.Y., et al., Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys, 2013. 52(1): p. 47-57.
35. Talbott, E.O., et al., Long-Term Follow-Up of the Residents of the Three Mile Island Accident Area: 1979-1998. Environmental Health Perspectives, 2002. 111(3): p. 341-348.
36. Bauer, S., et al., Radiation exposure due to local fallout from Soviet atmospheric nuclear weapons testing in Kazakhstan: solid cancer mortality in the Semipalatinsk historical cohort, 1960-1999. Radiation research, 2005. 164(4): p. 409-419.
37. Grosche, B., et al., Mortality from cardiovascular diseases in the Semipalatinsk historical cohort, 1960-1999, and its relationship to radiation exposure. Radiation research, 2011. 176(5): p. 660-669.
38. Azizova, T., et al., Cerebrovascular diseases in the cohort of workers first employed at Mayak PA in 1948-1958. Radiation research, 2010. 174(6b): p. 851-864.
39. Azizova, T., et al., Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948-1958. Radiation research, 2010. 174(2): p. 155-168.
40. Azizova, T.V., et al., Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948-1972. Radiat Environ Biophys, 2011. 50(4): p. 539-52.
41. Azizova, T.V., et al., Ischemic heart disease in nuclear workers first employed at the Mayak PA in 1948–1972. Health physics, 2012. 103(1): p. 3-14.
42. Ivanov, V.K., Late cancer and noncancer risks among Chernobyl emergency workers of Russia. Health physics, 2007. 93(5): p. 470-479.
43. Ivanov, V.K., et al., The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Physics, 2006. 90(3): p. 199-207.
44. Rahu, K., et al., Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study. BMJ open, 2014. 4(5): p. e004516.
45. Howe, G.R., et al., Analysis of the mortality experience amongst US nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiation research, 2004. 162(5): p. 517-526.
46. Muirhead, C.R., et al., Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer, 2009. 100(1): p. 206-12.
47. Vrijheid, M., et al., Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. Int J Epidemiol, 2007. 36(5): p. 1126-35.
48. Hauptmann, M., et al., Mortality from diseases of the circulatory system in radiologic technologists in the United States. American journal of epidemiology, 2003. 157(3): p. 239-248.
49. Linet, M.S., et al., Interventional radiography and mortality risks in US radiologic technologists. Pediatric radiology, 2006. 36(2): p. 113-120.
50. Hwang, S.-L., et al., Cancer risks in a population with prolonged low dose-rate γ-radiation exposure in radiocontaminated buildings, 1983-2002. International journal of radiation biology, 2006. 82(12): p. 849-858.
51. Marcello P, K.G., Principles of Biostatistics. 2 nd ed. Duxbury, Australia: United Kingdom. 2000. p.66-86.
52. Vandenbroucke, J.P., A shortcut method for calculating the 95 per cent confidence interval of the standardized mortality ratio. American Journal of Epidemiology, 1982. 115(2): p. 303-304.
53. Prentice, R.L. and M.W. Mason, On the application of linear relative risk regression models. Biometrics, 1986: p. 109-120.
54. Cardiovascular diseases. World Health Organization [cited 2015 0529].
55. Cardiovascular disease prevention and control. The Community Guide [cited 2015 0529].
56. Bonita, R., R. Beaglehole, and T. Kjellström, Basic epidemiology. 2006: World Health Organization.
57. 陳建仁, 流行病學: 原理與方法. 1999: 聯經出版事業公司.
58. Ridker, P.M., et al., C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. New England Journal of Medicine, 2000. 342(12): p. 836-843.
59. Fajardo, L. and J. Stewart, Experimental radiation-induced heart disease. I. Light microscopic studies. The American journal of pathology, 1970. 59(2): p. 299.
60. Schultz-Hector, S. and K.R. Trott, Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys, 2007. 67(1): p. 10-8.
61. Lauk, S., Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation-induced heart disease in rats. Radiation research, 1987. 110(1): p. 118-128.
62. Quarmby, S., R.D. Hunter, and S. Kumar, Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer research, 1999. 20(5B): p. 3375-3381.
63. Arenas, M., et al., Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. International Journal of Radiation Oncology* Biology* Physics, 2006. 66(2): p. 560-567.
64. Fujiwara, S., et al., Levels of parathyroid hormone and calcitonin in serum among atomic bomb survivors. Radiation research, 1994. 137(1): p. 96-103.
65. Hamada, N., et al., Emerging issues in radiogenic cataracts and cardiovascular disease. Journal of radiation research, 2014: p. rru036.
66. Lau, B., S.R. Cole, and S.J. Gange, Competing risk regression models for epidemiologic data. American journal of epidemiology, 2009: p. kwp107.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top