跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/11/30 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梅華軒
研究生(外文):Hua-Hsuan Mei
論文名稱:海洋渦鞭毛藻Gambierdiscus spp.之鈉離子通道毒素分析研究
論文名稱(外文):Detection of Sodium Channel Toxins in Marine Dinoflagellates Gambierdiscus spp.
指導教授:盧重光
指導教授(外文):Chung-Kuang Lu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:100
中文關鍵詞:珊瑚礁魚毒中毒甘比爾藻小鼠神經母瘤細胞分析實驗西加魚毒毒素液相層析串聯質譜儀
外文關鍵詞:CiguateraGambierdiscusNeuro-2a cell-based assayCiguatoxinsLC-MS/MS18s rDNA sequencingCalcofluor staining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
珊瑚礁魚毒毒素 (Ciguatoxins,縮寫為CTXs),或音譯為西加魚毒毒素,是一類具有多環醚的脂溶性毒素,P-CTX-1首先由肉食性珊瑚礁魚體內純化獲得,實驗小鼠的半致死劑量為0.35 μg/kg;P-CTX-1的前驅物是由一種附著於海藻或珊瑚礁表面的渦鞭毛藻─甘比爾藻 (Gambierdiscus spp.) 所生產,藉由食物鏈傳遞至食物鏈各營養階層,經由草食性魚類傳至肉食性魚類體中,當人類食用被毒化的魚類時,會引起珊瑚礁魚毒中毒症狀 (ciguatera fish poisoning,簡稱CFP)。熱帶珊瑚礁魚毒的臨床症狀包含:胃腸症狀、神經症狀及心臟血管症狀,病徵可維持數週甚至數年之久。目前已知西加魚毒毒素可藉由和細胞膜上的鈉離子通道蛋白結合,抑制通道關閉,使鈉離子大量進入細胞內造成細胞死亡。目前除西加魚毒毒素 (P-CTX-1) 外,也發現幾種西加魚毒毒素的異構物,如P-CTX-2、P-CTX-3及P-CTX-4A/B等,但要取得足量的毒素樣品以供進一步的機轉研究或是做為食品安全檢測之分析標準品還是一大難題。
小鼠神經母瘤細胞分析實驗 (Neuro-2a cell-based assay;CBA) 可用來檢測萃取物是否含有鈉離子通道活化性毒素,事先使用濃度為十比一的烏本酸 (ouabain) 和藜蘆次鹼 (veratridine) 處理小鼠神經母瘤細胞,可增加Neuro-2a細胞對鈉離子通道毒素的敏感性,經過前處理的實驗組再加入樣品後其細胞存活率比未前處理的控制組低,則表示樣品內含鈉離子通道活化物 (西加魚毒毒性)。
依據先前的研究,實驗室內有兩株甘比爾藻─1D00-1和DS0511-07可能為有潛力的產毒來源,尤其是藻株1D00-1,被選來建構西加魚毒 (鈉離子通道活化物) 篩選平台,1D00-1的海水培養液樣品經過液相層析串聯質譜儀分析後,鑑定到西加魚毒毒素P-CTX-1和其異構物:P-CTX-2和P-CTX-3,為首次發現Gambierdiscus sp.可產生P-CTX-1,由此可見除了草食性魚類與肉食性魚類以外,也能藉由培養特定品種的甘比爾藻取得西加魚毒毒素。
除了1D00-1外,實驗室內另外十四株甘比爾藻的二氯甲烷萃取物也利用小鼠神經母瘤細胞分析實驗分析,結果顯示其中十一株藻株可能產生鈉離子通道活化性毒素,而十一株之中有五株被認為是有潛力的產毒來源,接著透過基因定序及外型鑑定顯示這些藻株其親緣關係和G. toxicus和G. pacificus這兩個品種很相近,而1D00-1則是較接近G. polynesiensis,可能是個新品種和有力的產毒來源。

Ciguatoxins (CTXs), cyclic polyether toxins (P-CTX-1: LD50=0.35 μg/kg i.p. in mice), were derived from marine dinoflagellates belonging to the genus Gambierdiscus. The CTXs might be transformed and accumulated in marine organisms through the food web, and cause ciguatera fish poisoning (CFP), which threaten people’s seafood consumption. The symptoms of CFP involve digestive, cardiovascular and neurological disorders which may last for weeks or even years. Previous studies indicated that CTXs may activate voltage-gated sodium channels (VGSCs) and cause cell death by influx of sodium ions into cells. There are numerous congeners of P-CTX-1 (e.g. P-CTX-2 &; 3, P-CTX-4A/B), and most of them are difficult to quantitatively obtain for further studies of action mechanisms and effects on human beings and the ecosystem.
Neuro-2a cell-based assay (Neuro-2a CBA) was established for detecting VGSCs activating compounds. Neuroblastoma cells pretreated with ouabain (O) and veratridine (V) in 10 to 1 molar ratio which could be sensitized to VGSC activating toxins. The more decrease of cell viability of O/V treated cells than non-treated cells indicates the presence of VGSC activating compounds (CTX-like toxicity).
According to the previous study, two of our Gambierdiscus stains, 1D00-1 and DS0511-07 were supposed to be candidates for CTXs production (Appendix 2). Particularly strain 1D00-1 was selected for CTXs (VGSC activating compounds) screening platform establishment. P-CTX-1, -2 and -3 were identified in the culture medium of 1D00-1 by LC-MS/MS analysis. This is the first finding that P-CTX-1 would be produced from the culture of specific Gambierdiscus strains in addition to the toxic herbivorous or carnivorous fishes.
In addition, the dichloromethane extracts of our other 14 Gambierdiscus spp. were also screened for Na+ channel activators by Neuro-2a CBA. The results showed that 11 of 14 Gambierdiscus strains are able to produce VGSCs activators. Among 11 toxic strains, 5 strains are potential for VGSC activating toxin production. The phylogenetic information and morphological analysis showed most of them were distributed to G. toxicus and G. pacificus. However, 1D00-1 was identified to genetically relate to G. polynesiensis, which could be a novel and potent strain for CTX production.

誌謝 i
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures viii
List of Tables x
List of Abbreviation xi
Introduction 1
Specific aim of this study 14
Materials 15
Methods 19
Results 27
Discussion 36
Reference 42
Figures 53
Tables 79
Supplementary Information 87
Appendix 98

1. Murata, M. and T. Yasumoto, Marine toxins. Chem. Rev., 1993. 93: p. 1097-1909.
2. Murata, M. and T. Yasumoto, The structure elucidation and biological activities of high molecular weight algal toxins: maitotoxin, prymnesins and zooxanthellatoxins. Nat Prod Rep, 2000. 17(3): p. 293-314.
3. Smayda, T.J., Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. oceanogr., 1997. 45(5, part 2): p. 1137-1153.
4. Camacho, F.G., et al., Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv, 2007. 25(2): p. 176-94.
5. Hinder, S.L., et al., Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications. Environ Health, 2011. 10: p. 54.
6. Whittle, K. and S. Gallacher, Marine toxins. Br Med Bull, 2000. 56(1): p. 236-53.
7. Gill, S., et al., Neural injury biomarkers of novel shellfish toxins, spirolides: a pilot study using immunochemical and transcriptional analysis. Neurotoxicology, 2003. 24(4-5): p. 593-604.
8. Fleming, L.E., et al., Marine seafood toxin diseases: issues in epidemiology &; community outreach. p. 1-4.
9. Laws, E.A., L.E. Fleming, and J.J. Stegeman, Centers for Oceans and Human Health: contributions to an emerging discipline. Introduction. Environ Health, 2008. 7 Suppl 2: p. S1.
10. Scheuer, P.J., et al., Ciguatoxin: isolation and chemical nature. Science, 1967. 155(3767): p. 1267-8.
11. Lehane, L. and R.J. Lewis, Ciguatera: recent advances but the risk remains. Int J Food Microbiol, 2000. 61(2-3): p. 91-125.
12. Kodama, A.M. and Y. Hokama, Variations in symptomatology of ciguatera poisoning. Toxicon, 1989. 27(5): p. 593-5.
13. Barton, E.D., et al., Ciguatera fish poisoning. A southern California epidemic. West J Med, 1995. 163(1): p. 31-5.
14. Gillespie, N.C., et al., Ciguatera in Australia. Occurrence, clinical features, pathophysiology and management. Med J Aust, 1986. 145(11-12): p. 584-90.
15. R. Bagnis, T. Kuberski, and S. Laugier, Clinical observations on 3,009 cases of ciguatera (fish poisoning) in the South Pacific. Am J Trop Med Hyg, 1979. 28(6): p. 1067-1073.
16. Lewis, R.J., Ciguatera management. SPC Live Reef Fish Information Bulletin, 2000. #7: p. 11-13.
17. Mills, A.R., Poisonous fish in the South Pacific. J Trop Med Hyg, 1956. 59(5): p. 99-103.
18. Randall, J., A review of ciguatera, tropical fish poisoning, with a tentative explanation of its cause. Bull. Mar. Sci., 1958. 8: p. 236-267.
19. Yasumoto T, et al., Finding of a dinoflagellate as a likely culprit of ciguatera. Bull Japan Soc Sci Fish, 1977. 43: p. 1021-1026.
20. Adachi, R. and Y. Fukuyo, The thecal structure of a marine toxic dinoflagllate Gambierdiscus toxicus gen. et sp. nov. collected in a ciguatera-endemic area. Bulletin of the Japanese Society of Scientific Fisheries, 1979. 45(1): p. 67-71.
21. Yasumoto T, et al., Toxins Produced by Benthic Dinoflagellates. Biol. Bull., 1987. 172: p. 128-131.
22. Murata M, et al., Structure of ciguatoxin and its congener. J. Am. Chem. Soc, 1989. 111(24): p. 8929-8931.
23. Murata M, et al., Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J . Am. Chem. Soc., 1990. 112(11): p. 4380-4386.
24. Holmes, M.J., et al., Strain dependent production of ciguatoxin precursors (gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Toxicon, 1991. 29(6): p. 761-75.
25. Holmes, M.J., R.J. Lewis, and N.C. Gillespie, Toxicity of Australian and French polynesian strains of Gambierdiscus toxicus (Dinophyceae) grown in culture: characterization of a new type of maitotoxin. Toxicon, 1990. 28(10): p. 1159-72.
26. Satake, M., M. Murata, and T. Yasumoto, Gambierol: a new toxic polyether compound isolated from the marine dinoflagellate Gambierdiscus toxicus J . Am. Chem. Soc., 1993. 115: p. 361-362.
27. Nagai, H., et al., Biological activities of novel polyether antifungals, gambieric acids A and B from a marine dinoflagellate Gambierdiscus toxicus. J Antibiot (Tokyo), 1993. 46(3): p. 520-2.
28. Nagai, H., et al., Gambieric acids: unprecedented antifungal substances isolated from cultures of a marine dinoflagellate Gambierdiscus toxicus. J . Am. Chem. Soc., 1992. 114: p. 1102-1103.
29. Satake, M., et al., Isolation and structure of ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate Gambierdiscus toxicus and parrotfish Scarus gibbus. Biosci Biotechnol Biochem, 1996. 60(12): p. 2103-5.
30. Lewis, R.J. and M.J. Holmes, Origin and transfer of toxins involved in ciguatera. Comp Biochem Physiol C, 1993. 106(3): p. 615-28.
31. Nishimura, T., et al., Genetic diversity and distribution of the ciguatera-causing dinoflagellate Gambierdiscus spp. (Dinophyceae) in coastal areas of Japan. PLoS One, 2013. 8(4): p. e60882.
32. Litaker, R.W., et al., Global distribution of ciguatera causing dinoflagellates in the genus Gambierdiscus. Toxicon, 2010. 56(5): p. 711-30.
33. Richlen, M.L., et al., Phylogeography, morphological variation and taxonomy of the toxic dinoflagellate Gambierdiscus toxicus (Dinophyceae). Harmful Algae, 2008. 7(5): p. 614-629.
34. Faust, M.A., Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J.Phycol., 1995. 31: p. 996-1003.
35. Litaker, R.W., et al., Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia, 2009. 48(5): p. 344-390.
36. Chinain, M., M.A. Faust, and S. Pauillac, Morphology and molecular analysis of three toxic species of Gambierdiscus (Dinophyceae): G. pacificus, sp. nov., G. australes, sp. nov., and G. polynesiensis, sp. nov. J. Phycol., 1999. 35: p. 1282-1296.
37. Gillespie, N., et al. The significance of the absence of ciguatoxin in a wild population of a Gambierdiscus toxicus. in Proceedings of the Fifth International Coral Reef Congress, Tahiti 27 May- 1 June 1985. 1985.
38. Yasumoto, T., Marine microorganisms toxins-- an overview. Elsevier, New York, 1990: p. 3-8.
39. Tosteson, T.R., et al., Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus. Appl Environ Microbiol, 1989. 55(1): p. 137-41.
40. Micouin, L., et al., Toxicity of French Polynesian strains of Gambierdiscus toxicus in cultures. Bull Soc Pathol Exot, 1992. 85(5 Pt 2): p. 474-7.
41. Vandersea, M.W., et al., Gambierdiscus: linking taxonomy and genetics. 3rd Symposium on Harmful Algae in the U.S. Asilomar Conference, 2005: p. 150.
42. Chinain, M., et al., Growth and toxin production in the ciguatera-causing dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) in culture. Toxicon, 2010. 56(5): p. 739-50.
43. Legrand, A.M., et al., Characterization of ciguatoxins from different fish species and wild Gambierdiscus toxicus, in In: Tosteson TR (Ed), Proceedings of the 3rd International Conference on Ciguatera, Lajas, Porto Rico (1990), pp 25-32. 1992.
44. Hamilton, B., et al., Multiple ciguatoxins present in Indian Ocean reef fish. Toxicon, 2002. 40(9): p. 1347-53.
45. Vernoux, J.P. and R.J. Lewis, Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon, 1997. 35(6): p. 889-900.
46. Roeder, K., et al., Characteristic profiles of Ciguatera toxins in different strains of Gambierdiscus spp. Toxicon, 2010. 56(5): p. 731-8.
47. Legrand, A., et al. Two structural types of ciguatoxins involved on ciguatera fish poisoning in French Polynesia. in VIII International conference on Harmful algae- Abstracts and Posters Classification. vp. 1997. 1997.
48. Satake, M., M. Murata, and T. Yasumoto, The structure of CTX3C, a ciguatoxin congener isolated from cultured Gambierdiscus toxicus. Tetrahedron Letters, 1993. 34(12): p. 1975-1978.
49. Lewis, R.J., et al., Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon, 1991. 29(9): p. 1115-27.
50. Bidard, J.N., et al., Ciguatoxin is a novel type of Na+ channel toxin. J Biol Chem, 1984. 259(13): p. 8353-7.
51. Molgo, J., J.X. Comella, and A.M. Legrand, Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals. Br J Pharmacol, 1990. 99(4): p. 695-700.
52. Benoit, E., et al., Nodal swelling produced by ciguatoxin-induced selective activation of sodium channels in myelinated nerve fibers. Neuroscience, 1996. 71(4): p. 1121-31.
53. Molgo, J., T. Shimahara, and A.M. Legrand, Ciguatoxin, extracted from poisonous morays eels, causes sodium-dependent calcium mobilization in NG108-15 neuroblastoma x glioma hybrid cells. Neurosci Lett, 1993. 158(2): p. 147-50.
54. Hidalgo, J., et al., Pacific ciguatoxin-1b effect over Na+ and K+ currents, inositol 1,4,5-triphosphate content and intracellular Ca2+ signals in cultured rat myotubes. Br J Pharmacol, 2002. 137(7): p. 1055-62.
55. Arias, H.R., Marine Toxins Targeting Ion Channels. Marine Drugs, 2006. 4(3): p. 37-69.
56. Kumar-Roiné, S., et al., A review of traditional remedies of ciguatera fish poisoning in the Pacific. Phytother Res, 2011. 25(7): p. 947-58.
57. Vetter, I., et al., Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J, 2012. 31(19): p. 3795-808.
58. Mattei, C., et al., Neurotoxins targetting receptor site 5 of voltage-dependent sodium channels increase the nodal volume of myelinated axons. J Neurosci Res, 1999. 55(6): p. 666-73.
59. Lombet, A., J.N. Bidard, and M. Lazdunski, Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett, 1987. 219(2): p. 355-9.
60. Trainer, V.L., et al., Photoaffinity labelling of the brevetoxin receptor site on sodium channels in rat brain synaptosomes. Mol Pharmacol., 1991. 40(6): p. 988-994.
61. Trainer, V.L., D.G. Baden, and W.A. Catterall, Identification of peptide components of the brevetoxin receptor site of rat brain sodium channels. J Biol Chem, 1994. 269(31): p. 19904-9.
62. Catterall, W.A., Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol, 1980. 20: p. 15-43.
63. Cestele, S. and W.A. Catterall, Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie, 2000. 82(9-10): p. 883-92.
64. Barhanin, J., et al., A monoclonal immunotoxin acting on the Na+ channel, with properties similar to those of a scorpion toxin. Proc Natl Acad Sci U S A, 1985. 82(6): p. 1842-6.
65. Lewis, R., Immunological, biochemical and chemical features of ciguatoxins-- implications for the detection of ciguateric fish. Memoirs of the Queensland Museum. Brisbane, 1994. 34(3): p. 541-548.
66. Bottein Dechraoui, M.Y., Z. Wang, and J.S. Ramsdell, Optimization of ciguatoxin extraction method from blood for Pacific ciguatoxin (P-CTX-1). Toxicon, 2007. 49(1): p. 100-5.
67. Caillaud, A., et al., Update on methodologies available for ciguatoxin determination: perspectives to confront the onset of ciguatera fish poisoning in Europe. Mar Drugs, 2010. 8(6): p. 1838-907.
68. Dickey, R.W., et al., Formulation of regulatory advisory levels for Caribbean and Pacific ciguatoxins and tiered method for their determination. In Abstract book of the Ciguatera and Related Biotoxins Workshop, Noumea, New Caledonia, 2007: p. 35.
69. Banner, A.H., et al., Observations on ciguatera-type toxin in fish. Ann N Y Acad Sci, 1960. 90: p. 770-87.
70. Lewis, R.J. and M. Sellin, Recovery of ciguatoxin from fish flesh. Toxicon, 1993. 31(10): p. 1333-6.
71. Lewis, R.J., Detection of Ciguatoxins and related Benthic Dinoflagellate Toxins: in vivo and in vitro Methods. In Manual on Harmful Marine Microalgae; Hallegraeff, G., Anderson, D., Cembella, A., Eds.; IOC Manuals and Guides No.33, UNESCO: Paris, France, 1995. 33: p. 135-161.
72. Miyahara, J.T., C.K. Akau, and T. Yasumoto, Effects of ciguatoxin and maitotoxin on the isolated guinea pig atria. Res Commun Chem Pathol Pharmacol, 1979. 25(1): p. 177-80.
73. Kimura, L.H., et al., Comparison of three different assays for the assessment of ciguatoxin in fish tissues: radioimmunoassay, mouse bioassay and in vitro guinea pig atrium assay. Toxicon, 1982. 20(5): p. 907-12.
74. Empey Campora, C., et al., Detection of ciguatoxin in fish tissue using sandwich ELISA and neuroblastoma cell bioassay. J Clin Lab Anal, 2008. 22(4): p. 246-53.
75. Manger, R.L., et al., Detection of sodium channel toxins: directed cytotoxicity assays of purified ciguatoxins, brevetoxins, saxitoxins, and seafood extracts. J AOAC Int, 1995. 78(2): p. 521-7.
76. Manger, R.L., et al., Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium channels: semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Anal Biochem, 1993. 214(1): p. 190-4.
77. Catterall, W.A., Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem, 1986. 55: p. 953-85.
78. Catterall, W.A. and M. Nirenberg, Sodium uptake associated with activation of action potential ionophores of cultured neuroblastoma and muscle cells. Proc Natl Acad Sci U S A, 1973. 70(12): p. 3759-63.
79. Canete, E. and J. Diogene, Comparative study of the use of neuroblastoma cells (Neuro-2a) and neuroblastomaxglioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon, 2008. 52(4): p. 541-50.
80. Caillaud, A., et al., Cell-based assay coupled with chromatographic fractioning: a strategy for marine toxins detection in natural samples. Toxicol In Vitro, 2009. 23(8): p. 1591-6.
81. Dechraoui, M.Y., et al., Use of two detection methods to discriminate ciguatoxins from brevetoxins: application to great barracuda from Florida Keys. Toxicon, 2005. 46(3): p. 261-70.
82. Barchi, R.L. and J.B. Weigele, Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle. J Physiol, 1979. 295: p. 383-96.
83. Catterall, W.A. and M. Risk, Toxin T4(6) from Ptychodiscus brevis (formerly Gymnodinium breve) enhances activation of voltage-sensitive sodium channels by veratridine. Mol Pharmacol, 1981. 19(2): p. 345-8.
84. Catterall, W.A., et al., Voltage-gated ion channels and gating modifier toxins. Toxicon, 2007. 49(2): p. 124-41.
85. Dechraoui, M.Y., et al., Ciguatoxins and brevetoxins, neurotoxic polyether compounds active on sodium channels. Toxicon, 1999. 37(1): p. 125-43.
86. Dechraoui, M.Y., J.J. Wacksman, and J.S. Ramsdell, Species selective resistance of cardiac muscle voltage gated sodium channels: characterization of brevetoxin and ciguatoxin binding sites in rats and fish. Toxicon, 2006. 48(6): p. 702-12.
87. Bottein Dechraoui, M.Y. and J.S. Ramsdell, Type B brevetoxins show tissue selectivity for voltage-gated sodium channels: comparison of brain, skeletal muscle and cardiac sodium channels. Toxicon, 2003. 41(7): p. 919-27.
88. Poli, M.A., T.J. Mende, and D.G. Baden, Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol Pharmacol, 1986. 30(2): p. 129-35.
89. Hokama, Y., A.H. Banner, and D.B. Boylan, A radioimmunoassay for the detection of ciguatoxin. Toxicon, 1977. 15(4): p. 317-25.
90. Hokama, Y., et al., Monoclonal antibody (MAb) in detection of ciguatoxin (CTX) and related polyethers by the stick-enzyme immunoassay (S-EIA) in fish tissues associated with ciguatera poisoning. In Mycotoxins and Phycotoxins '88; Natori, S.; Hashimoto, K.; Ueno, Y., Eds.; Elsevier: Amsterdam, The Netherland, 1988: p. 303-310.
91. Hokama, Y., et al., Evaluation of the stick enzyme immunoassay in Caranx sp. and Seriola dumerili associated with ciguatera. J Clin Lab Anal, 1990. 4(5): p. 363-6.
92. Hokama, Y., et al., Evaluation of the Hawaiian reef fishes with the solid phase immunobead assay. J Clin Lab Anal, 1993. 7(1): p. 26-30.
93. Dickey, R., H. Granade, and F. McClure, Evaluation of a solid-phase immunobead assay for detection of ciguatera-related biotoxins in Caribbean finfish. Memoirs of the Queensland Museum. Brisbane, 1994. 34(3): p. 481-488.
94. Springer, A. and O.R. Mawlawi, Evaluation of the quantitative accuracy of a commercially available positron emission mammography scanner. Med Phys, 2011. 38(4): p. 2132-9.
95. Legrand, A.M., et al., Isolation and some properties of ciguatoxin. Journal of Applied Phycology, 1989. 1(2): p. 183-188.
96. Higerd, T.B., et al., Resolution of Ciguatera-Associated Toxins Using High-Performance Liquid Chromatography (HPLC). Mar. Fish. Rev., 1986. 48: p. 23-28.
97. Legrand, A.M., et al., Chromatographic and spectral evidence for the presence of multiple ciguatera toxins. 1990.
98. Goto, J., et al., New sensitive derivatization of hydroxysteroids for high-performance liquid chromatography with fluorescence detection. Analytica Chimica Acta, 1983. 147(0): p. 397-400.
99. Yasumoto, T., et al., Determinations of marine toxins in foods. J AOAC Int, 1995. 78(2): p. 574-82.
100. Lewis, R.J., et al., Ionspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins. Nat Toxins, 1994. 2(2): p. 56-63.
101. Lewis, R.J. and A. Jones, Characterization of ciguatoxins and ciguatoxin congeners present in ciguateric fish by gradient reverse-phase high-performance liquid chromatography/mass spectrometry. Toxicon, 1997. 35(2): p. 159-68.
102. Lewis, R.J., A. Jones, and J.P. Vernoux, HPLC/tandem electrospray mass spectrometry for the determination of Sub-ppb levels of Pacific and Caribbean ciguatoxins in crude extracts of fish. Anal Chem, 1999. 71(1): p. 247-50.
103. Lewis, R.J., A. Yang, and A. Jones, Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh. Toxicon, 2009. 54(1): p. 62-6.
104. Stewart, I., et al., Establishing a public health analytical service based on chemical methods for detecting and quantifying Pacific ciguatoxin in fish samples. Toxicon, 2010. 56(5): p. 804-12.
105. Yasumoto, T., The chemistry and biological function of natural marine toxins. Chem Rec, 2001. 1(3): p. 228-42.
106. Satake, M., et al., Isolation and structures of new ciguatoxin analogs, 2,3-dihydroxyCTX3C and 51-hydroxyCTX3C, accumulated in tropical reef fish. Tetrahedron Letters, 1998. 39(10): p. 1197-1198.
107. Halstead, B.W., Poisonous and Venomous Marine Animals of the World. Darwin Press: Princeton, NJ, USA, 1978.
108. Vernoux, J.P., et al., A study of the distribution of ciguatoxin in individual Caribbean fish. Acta tropica, 1985. 42(3): p. 225-233.
109. Takakura, H., et al., Synthetic Studies on Ciguatoxin: A Highly Convergent Synthesis of the GHIJKLM Ring System Based on B-Alkyl Suzuki Coupling. Angew Chem Int Ed Engl, 2001. 40(6): p. 1090-1093.
110. Hirama, M., et al., Total synthesis of ciguatoxin CTX3C. Science, 2001. 294(5548): p. 1904-7.
111. Inoue, M., et al., First- and second-generation total synthesis of ciguatoxin CTX3C. Proc Natl Acad Sci U S A, 2004. 101(33): p. 12013-8.
112. Inoue, M., et al., Practical total synthesis of ciguatoxin CTX3C by improved protective group strategy. Org Lett, 2002. 4(25): p. 4551-4.
113. Inoue, M., et al., Total synthesis of ciguatoxin and 51-hydroxyCTX3C. J Am Chem Soc, 2006. 128(29): p. 9352-4.
114. Hamajima, A. and M. Isobe, Total synthesis of ciguatoxin. Angew Chem Int Ed Engl, 2009. 48(16): p. 2941-5.
115. MacKenzie, L., et al., Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon, 2004. 44(8): p. 901-18.
116. Fux, E., R. Bire, and P. Hess, Comparative accumulation and composition of lipophilic marine biotoxins in passive samplers and in mussels (M. edulis) on the West Coast of Ireland. Harmful Algae, 2009. 8(3): p. 523-537.
117. MacKenzie, L.A., In situ passive solid-phase adsorption of micro-algal biotoxins as a monitoring tool. Curr Opin Biotechnol, 2010. 21(3): p. 326-31.
118. Caillaud, A., et al., Monitoring of dissolved ciguatoxin and maitotoxin using solid-phase adsorption toxin tracking devices: Application to Gambierdiscus pacificus in culture. Harmful Algae, 2011. 10(5): p. 433-446.
119. Tamura, K., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011. 28(10): p. 2731-9.
120. Hall, B.G., Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013. 30(5): p. 1229-35.
121. Taylor, F.J.R., The biology of dinoflagellates. Botanical Monograph. Blackwell scientific publications, Oxford, 1987. 21: p. 785.
122. Villareal, T.A., et al., Petroleum production platforms as sites for the expansion of ciguatera in the northwestern Gulf of Mexico. Harmful Algae, 2007. 6(2): p. 253-259.
123. Yokoyama, A., et al., Some chemical properties of maitotoxin, a putative calcium channel agonist isolated from a marine dinoflagellate. (0021-924X (Print)).
124. Yasumoto, T., R. Bagnis, and J. P.Vernoux, Toxicity of the Surgeonfishes-II Properties of the Principal Water-soluble Toxin. NIPPON SUISAN GAKKAISHI, 1976. 42(3): p. 359-365.
125. Benoit, E., A.M. Legrand, and J.M. Dubois, Effects of ciguatoxin on current and voltage clamped frog myelinated nerve fibre. Toxicon, 1986. 24(4): p. 357-364.
126. Lartigue, J., et al., Nitrogen source effects on the growth and toxicity of two strains of the ciguatera-causing dinoflagellate Gambierdiscus toxicus. Harmful Algae, 2009. 8(5): p. 781-791.
127. Sako, Y., et al., Phylogenetic relationship of ciguatera-causing dinoflagellate Gambierdiscus toxicus with 18S ribosomal DNA sequence comparison, in In: Harmful and toxic algal blooms, Yasumoto T, Oshima Y, Fukuyo Y (Eds), Intergovernmental Oceanographic Commission of UNESCO, pp 443-446. 1996.
128. Babinchak, J.A., G.J. Doucette, and R.M. Ball, Partial characterization of the LSU rRNA gene from the ciguatoxic dinoflagellate, Gambierdiscus toxicus-John A. Babinchak, Gregory J. Doucette and R. Martin Ball. Paris-UNESCO.
129. Durand-Cle´ment, M., Study of production and toxicity of cultured Gambierdiscus toxicus. The Biological Bulletin, 1987. 172(1): p. 108-121.
130. Hokama, Y., et al., Growth and cyclic studies of Gambierdiscus toxicus in the natural environment and in culture. Harmful and Toxic Algal Blooms., 1996: p. 313-315.
131. Tomas, C.R. and D.G. Baden, The influence of phosphorus source on the growth and cellular toxin content of the benthic dinoflagellate Prorocentrum lima. In: Smayda, T.J., Shimizu, Y. (Eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, New York, 1993: p. 565-570.
132. Murata, M., et al., Structure of Maitotoxin. J. Am. Chem. Soc., 1993. 115(5): p. 2060-2062.
133. Caillaud, A., T. Yasumoto, and J. Diogene, Detection and quantification of maitotoxin-like compounds using a neuroblastoma (Neuro-2a) cell based assay. Application to the screening of maitotoxin-like compounds in Gambierdiscus spp. Toxicon, 2010. 56(1): p. 36-44.
134. Merritt, J.E., et al., SK&;F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J, 1990. 271(2): p. 515-22.
135. LePage, K.T., et al., On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. Crit Rev Neurobiol, 2005. 17(1): p. 27-50.
136. Babinchak, J., et al., Production of ciguatoxins in cultured Gambierdiscus toxicus. Memoirs of the Queensland Museum. Brisbane, 1994. 34(3): p. 447-453.
137. Chinain, M., et al., Genetic diversity in French Polynesian strains of the ciguatoxic dinoflagellate Gambierdiscus toxicus : RFLP and sequence analysis on the SSU and LSU rRNA genes, in In: Harmful Algae. Reguera B, Blanco J, Fernandez ML, Wyatt T (Eds). Intergovernmental Oceanographic Commission of UNESCO, Xunta de Galicia (Spain), pp 287-290. 1998.
138. Durand-Clement, M., A study of toxin production by Gambierdiscus toxicus in culture. Toxicon, 1986. 24(11–12): p. 1153-1157.
139. Bomber, J.W., D.R. Tindall, and D.M. Miller, Genetic variability in toxin potencies among seventeen clones of Gambierdiscus toxicus (Dinophyceae). Journal of Phycology, 1989. 25(4): p. 617-625.
140. Rein, K.S. and R.V. Snyder, The biosynthesis of polyketide metabolites by dinoflagellates. Adv Appl Microbiol, 2006. 59: p. 93-125.
141. Holmes, M.J., et al., Strain dependent production of ciguatoxin precursors (gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Toxicon : official journal of the International Society on Toxinology, 1991. 29(6): p. 761-775.
142. Peng, Y.G., et al., Neuroexcitatory actions of ciguatoxin on brain regions associated with thermoregulation. Neuroreport, 1995. 6(2): p. 305-9.
143. Ryan, J.C., et al., Transcriptional profiling of whole blood and serum protein analysis of mice exposed to the neurotoxin Pacific Ciguatoxin-1. Neurotoxicology, 2007. 28(6): p. 1099-109.
144. Tamura, K. and M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 1993. 10(3): p. 512-26.
145. Holmes, M.J., Gambierdiscus yasumotoi sp. nov. (Dinophyceae), a toxic benthic dinoflagellate from southeastern Asia. J. Phycol., 1998. 34: p. 661-668.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top