跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李政達
研究生(外文):Cheng-Ta Lee
論文名稱:特定種類聯絡神經元對上游輸入不同型式訊息所造成的齒狀回顆粒細胞激活之調控
論文名稱(外文):Specific Types of Interneurons Regulate Input Pattern-Dependent Recruitment of Dentate Granule Cells
指導教授:連正章
指導教授(外文):Cheng-Chang Lien
學位類別:博士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:102
中文關鍵詞:齒狀回伽瑪氨基丁酸抑制作用光遺傳學技術小清蛋白生長激素抑制素
外文關鍵詞:dentate gyrusGABAinhibitionoptogeneticsparvalbuminsomatostatin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
海馬迴在學習與記憶上扮演著很關鍵的角色。而齒狀回就如同海馬迴的閘門,它負責過濾且處理從大腦皮質傳來的訊息,再將其傳遞至海馬迴其他的區域。齒狀迴是一個由許多不同種類的神經元所混雜組成的神經族群。而在這些神經元中,為數最多的顆粒細胞受到各種聯絡神經元嚴密的抑制性調控,因此具有很高的活化閾值。然而,對於目前已知的特定種類分泌伽瑪基丁酸的聯絡神經元在顆粒細胞被內嗅皮質傳來的訊息所活化時如何進行調控現在還不清楚。我們在此呈現的是以藥理學的方式將A型伽瑪基丁酸受器阻塞後,不只能大幅提升顆粒細胞對上游輸入的訊息的敏銳度,還能使多數在一般情況不產生動作電位的顆粒細胞被激活。從對齒狀回中各種分泌伽瑪基丁酸的聯絡神經元的輸入強度閾值及產生動作電位的時間點加以分析的結果可推測出,來自於針對細胞本體的聯絡神經元及分子層聯絡神經元的前饋抑制侷限了顆粒細胞所能處理上游輸入訊息的強度的動態範圍。利用針對特定種類細胞的光遺傳學活性抑制技術,我們發現表現小清蛋白的聯絡神經元是主要壓抑顆粒細胞對大腦皮質傳來的單一訊息所產生的群體反應的聯絡神經元。而相較之下,表現小清蛋白的聯絡神經元和表現生長激素抑制素的聯絡神經元會分別對顆粒細胞能處理西塔和伽瑪頻率的訊息輸入的動態範圍進行不同的調控。值得一提的是,表現小清蛋白的聯絡神經元負責調控一連串動作電位的開端,而表現生長激素抑制素的聯絡神經元則是負責調控一連串動作電位的後半段。總結來說,這些研究結果顯示出特定種類的聯絡神經元會對顆粒細胞在針對從大腦皮質傳來不同型式的訊息做訊息處理轉換時分別進行不同的調控。
The hippocampus plays a key role in learning and memory. The dentate gyrus (DG) serves as a gateway to the hippocampus, filtering and processing incoming afferent information from the cortex and passing output to other hippocampal areas. The DG comprises a heterogeneous population of neurons. Among them, granule cells (GCs), the largest neuronal population of the DG, are under tight inhibitory control by various types of GABAergic interneurons (INs) and thus display a high activation threshold. However, the causal link between identified GABAergic INs and GC activation in response to afferent activity from entorhinal inputs remains unknown. Here we show that pharmacological GABAA receptor blockade not only greatly enhances the sensitivity of GCs to afferent inputs, but also recruits a subset of non-spiking GCs. Analysis of input threshold and spike timing of various types of GABAergic INs suggests that feedforward inhibition originating from somatic INs and molecular layer INs limits the dynamic range of input processing. Using cell type-specific optogenetic silencing, we found that parvalbumin-expressing (PV+) INs primarily suppress the population response of GCs to single-shock stimulation of cortical input. By contrast, PV+ and somatostatin-expressing (SST+) INs differentially regulate GC dynamics in response to θ and γ frequency inputs. Notably, PV+ INs control the onset of the spike series, whereas SST+ INs regulate the late spikes in the series. Together, these results demonstrate that specific types of GABAergic INs differentially regulate GC input transformations in response to different cortical input patterns.
誌謝_____________i
ABSTRACT________ii
中文摘要_______________________iii
TABLE OF CONTENTS________________iv
ABBREVIATIONS _________________1
INTRODUCTION_________________________________3
The Hippocampus _____________________________3
The Dentate Gyrus _______________________ 6
Inhibitory Circuits in the Dentate Gyrus _____________9
Signal Processing in a Neuron and in a Neuronal Population __________________________ 13
The Arrangement of Axon Projection and the Dynamic Range in the Mammalian Brain_____15
The Aim of This Study________________________________17
MATERIALS AND METHODS________________________18
Electrophysiology ________________________________18
Calibration of Input Strength for GC Activation____________________________________20
Threshold Stimulation, Population Activation Curves, and Measurement of Excitatory and Inhibitory Postsynaptic Currents ________________________________________________21
Virus Injections _____________________________________22
Post-hoc Recovery and Reconstruction of Recorded Neurons _________________________23
Statistics_______________________________24
RESULTS ___________________________________25
The GC Population Exhibit a Narrower Dynamic Range than the CA1 PC Population______25
Similar Inhibition-to-Excitation Ratios in the GCs __________________________________27
GABAergic Mechanism Restrains the Dynamic Range of the GC Population_____________28
Specific Types of GABAergic INs Restrict the Dynamic Range of the GC Population______ 30
Specific Types of INs Regulate I-O Transformations of the GC Population_______________32
PV+ INs Constrain the Cortical Dynamic Range of the GC Population __________________33
PV+ and SST+ INs Differentially Regulate GC Population Spikes in the Series____________34
DISCUSSION__________________________________37
Summary ____________________________37
Comparison to Previous Studies _______________________37
The Definition of “Dynamic Range”______________40
Shunting Inhibition Offsets GC I-O Relationships and Reduces Gain during Synaptic Excitation__________________________________41
A Lack of Synaptic Input Normalization in the GC Population_________________________42
Bidirectional Regulation of Spike Timing by GABAergic Conductance in the DG GCs_____43
Frequency-Tuned Distribution of Inhibition _____________43
REFERENCES __________________ 47
FIGURES AND TABLE _____________58
Fig. 1 Calibration of cortical input strength________________________________________58
Fig. 2 Isolation of monosynaptic EPSCs and feedforward IPSCs_______________________59
Fig. 3 The granule cell (GC) population shows narrow dynamic range___________________60
Fig. 4 The dynamic range and gain of individual cells are not significantly different between the GC population and CA1 PC population___________________________________________62
Fig. 5 Intrinsic properties of spiking and non-spiking GCs from adolescent rats____________64
Fig. 6 Threshold excitatory inputs show no difference in GCs recruited at weak input or strong input_____________________________________66
Fig. 7 The EPSGTs are larger in CA1 PCs recruited at stronger input strength_____________68
Fig. 8 Threshold inhibitory inputs to the GCs recruited at weak input are similar to the GCs recruited at strong input______________________69
Fig. 9 Similar inhibition-to-excitation ratios in all recruited mature GCs__________________71
Fig. 10 GABAA conductance restricts the dynamic range of the GC population____________72
Fig. 11 The dynamic range and gain of individual GCs are also modulated by GABAergic inhibition _____________75
Fig. 12 Regulation of the GC population dynamic range by somatic interneuron (INs) and ML INs ______________77
Fig. 13 Expression patterns of eNpHR3.0-eYFP in the ventral DG in cre-expressing mice____80
Fig. 14 Expression of eNpHR can selectively silence specific types of INs in DG___________81
Fig. 15 Parvalbumin-expressing (PV+) INs regulate GC input-output (I-O) transformations__83
Fig. 16 The lack of effect of silencing SST+ INs on DG pSpike is not due to poor expression efficiency of NpHR-eYFP_____________________________________________________ 85
Fig. 17 Silencing of PV+ INs, but not SST+ INs, expands the dynamic range of the GC population_______________________ 86
Fig. 18 PV+ and SST+ INs differentially regulate the pSpike series in the GC population____89
Fig. 19 PV+ and SST+ INs differentially regulate the pSpike series in the individual GCs____91
Fig. 20 Calibration of cortical input strength from different recording sites in the same slice__92
Fig. 21 Intrinsic properties of spiking and non-spiking GCs from adult mice______________94
Fig. 22 EPSGT negatively correlates with GC input resistance_________________________96
Fig. 23 Comparison of functional properties between spiking (S) GCs and NS→S GCs, which transformed into spiking GCs after gabazine treatment_______________________________97
Fig. 24 GABAergic inhibition regulates spike latency in GCs__________________________98
Fig. 25 The GC input-output (I-O) transformations in optogenetic silencing of GAD65+ INs are comparable to that in gabazine_______________________________________99
CURRICULUM VITAE_____________________________ 100

Acsády L, Káli S. 2007. Models, structure, function: the transformation of cortical signals in the dentate gyrus. Prog Brain Res. 163:577-599.
Adrian ED, Zotterman Y. 1926. The impulses produced by sensory nerve-endings. Part 2. The response of a single end-organ. J Physiol. 61:151–171.
Adrian ED, Zotterman Y. 1926. The impulses produced by sensory nerve endings. Part 3. Impulses set up by touch and pressure. J Physiol. 61:465–483.
Aimone JB, Deng W, Gage FH. 2011. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron. 70(4):589-596.
Alger BE, Nicoll RA. 1979. GABA-mediated biphasic inhibitory responses in hippocampus. Nature. 281:315-317.
Alme CB, Buzzetti RA, Marrone DG, Leutgeb JK, Chawla MK, Schaner MJ, Bohanick JD, Khoboko T, Leutgeb S, Moser EI, Moser MB, McNaughton BL, Barnes CA. 2010. Hippocampal granule cells opt for early retirement. Hippocampus. 20:1109-1123.
Altman J, Das GD. 1965. Autoradiographic and histological evidence of postnatal neurogenesis in rats. J Comp Neurol. 124:319-335.
Amaral DG, Lavenex P. 2006. "Ch 3. Hippocampal Neuroanatomy". In Andersen P, Morris R, Amaral DG, Bliss T, O'Keefe J. The Hippocampus Book. Oxford University Press.
Amaral DG, Scharfman HE, Lavenex P. 2007. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res. 163:3–22.
Andersen P, Bliss TV, Skrede KK. 1971. Lamellar organization of hippocampal excitatory pathways. Exp Brain Res. 13:222–238.
Andersen P. 1975. Organization of hippocampal neurons and their interconnections. In Isaacson RL, Pribram KH. The Hippocampus. 155-175.
Andersen P, Dingledine R, Gjerstad L, Langmoen IA, Laursen AM. 1980. Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol. 305:279-296.
Armstrong C, Szabadics J, Tamás G, Soltesz I. 2011. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward -aminobutyric acidergic modulators of entorhinal-hippocampal interplay. J Comp Neurol. 519:1476-1491.
Bakker A, Kirwan CB, Miller M, Stark CE. 2008. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science. 319(5870):1640-1642.
Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P. 2002. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci USA. 99:13222-13227.
Bartos M, Vida I, Jonas P. 2007. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 8(1):45-56.
Bliss TV, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 232(2):331-356.
Boyett JM, Buckmaster PS. 2001. Somatostatin-immunoreactive interneurons contribute to lateral inhibitory circuits in the dentate gyrus of control and epileptic rats. Hippocampus. 11:418-422.
Brady DR, Mufson EJ. 1997. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain. Neuroscience. 80(4):1113-1125.
Bragin A, Jandó G, Nadásdy Z, Hetke J, Wise K, Buzsáki G. 1995. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci. 15:47-60.
Brickley SG, Cull-candy SG, Farrant M. 1996. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol (Lond). 497: 753–759.
Broglio C, Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Rodríguez F, Salas C. 2005. Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull. 66 (4-6):397–399.
Buzsaki G. 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 68:362–385.
Cajal SR. 1893. Estructura del asta de Ammon. Anal Soc Esp Hist Nat. Madrid 22:53-114.
Cajal SR. 1933. Histology, 10th ed. Baltimore: Wood.
Carvalho TP, Buonomano DV. 2009. Differential effects of excitatory and inhibitory plasticity on synaptically driven neuronal input-output functions. Neuron. 61:774-785.
Cash S, Yuste R. 1999. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron. 22(2):383-94.
Chance FS, Abbott LF, Reyes AD. 2002. Gain modulation from background synaptic input. Neuron. 35:773-782.
Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK, Worley PF, McNaughton BL, Barnes CA. 2005. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus. 15:579-586.
Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng JK, Huang YY, Chiu CD, Lien CC. 2012. GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci. 32(1):62-67.
Chklovskii DB. 2004. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron. 43:609-617.
Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. 1995. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 378:75-78.
Colombo M, Broadbent N. 2000. Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 24(4):465–484.
Coulter DA, Carlson GC. 2007. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res. 163:235-243.
Csicsvari J, Jamieson B, Wise KD, Buzsáki G. 2003. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 37(2):311-322.
Curtis DR, Watkins JC. 1960. The excitation and depressionof spinal neurones by structurally related amino acids. J Neurochem. 6:117–141.
Dancause N, Barbay S, Frost SB, Plautz EJ, Popescu M, Dixon PM, Stowe AM, Friel KM, Nudo RJ. 2005. Topographically divergent and convergent connectivity between premotor and primary motor cortex. Cereb Cortex. 16:1057-1068.
Deng W, Aimone JB, Gage FH. 2010. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Rev Neurosci. 11:339–350.
Denny CA, Burghardt NS, Schachter DM, Hen R, Drew MR. 2012. 4- to 6-week-old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning. Hippocampus. 22:1188–1201.
Dieni CV, Nietz AK, Panichi R, Wadiche JI, Wadiche LO. 2013. Distinct determinants of sparse activation during granule cell maturation. J Neurosci. 33:19131-19142.
Diesmann M, Gewaltig MO, Aertsen A. 1999. Stable propagation of synchronous spiking in cortical neural networks. Nature. 402:529-533.
Doiron B, Longtin A, Berman N, Maler L. 2001. Subtractive and divisive inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural Comput. 13:227–248.
Dupret D, Pleydell-Bouverie B, Csicsvari J. 2008. Inhibitory interneurons and network oscillations. Proc Natl Acad Sci U S A. 105(47):18079-18080.
Eichenbaum H, Otto TA, Wible CG, Piper JM. 1991. Ch 7. Building a model of the hippocampus in olfaction and memory. In Davis JL, Eichenbaum H. Olfaction. MIT Press.
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. 1998. Neurogenesis in the adult human hippocampus. Nat Med. 4:1313–1317.
Ewell LA, Jones MV. 2010. Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci. 30:12597-12607.
Farrant M, Nusser Z. 2005. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 6(3):215-229.
Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger CE, Fernández G. 2001. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci. 4(12):1259-1264.
Földy C, Lee SY, Szabadics J, Neu A, Soltesz I. 2007. Cell type-specific gating of perisomatic inhibition by cholecystokinin. Nat Neurosci. 10(9):1128-1130.
Freund TF, Buzsáki G. 1996. Interneurons of the hippocampus. Hippocampus. 6:347-470.
Geiger JR, Lübke J, Roth A, Frotscher M, Jonas P. 1997. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron. 18(6):1009-1023.
Georgopoulos AP, Schwartz AB, Kettner RE. 1986. Neuronal population coding of movement direction. Science. 233(4771):1416-1419.
Golding NL, Spruston N. 1998. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron. 21:1189–1200.
Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S. 2012. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15:1700–1706.
Hájos N, Acsády L, Freund TF. 1996. Target selectivity and neurochemical characteristics of VIP-immunoreactive interneurons in the rat dentate gyrus. Eur J Neurosci. 8:1415-1431.
Halasy K, Somogyi P. 1993. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci. 5:411–429.
Hoffman DA, Magee JC, Colbert CM, Johnston D. 1997. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 387:869–875.
Hofman MA. 2014. Evolution of the human brain: when bigger is better. Front Neuroanat. 8:15.
Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I., Jonas P, Bartos M. 2014. Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus. 24:189–203.
Hu T, Towfic ZJ, Pehlevan C, Genkin A, Chklovskii DB. 2014. A Neuron as a Signal Processing Device. IEEE. 362-366.
Hsu TT, Lee CT, Tai MH, Lien CC. 2015. Differential Recruitment of Dentate Gyrus Interneuron Types by Commissural Versus Perforant Pathways. Cereb Cortex. Published online.
Igarashi KM, Lu L, Colgin LL, Moser MB, Moser EI. 2014. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature. 510:143-147.
Jacobs LF. 2003. The evolution of the cognitive map. Brain Behav Evol. 62(2):128–139.
Jonas P, Buzsaki G. 2007. Neural inhibition. Scholarpedia. 2(9):3286.
Kampa BM, Stuart GJ. 2006. Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci. 26(28):7424-7432.
Kesner RP. 2013. An analysis of the dentate gyrus function. Behav Brain Res. 254:1-7.
Kraushaar U, Jonas P. 2000. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci. 20:5594-5607.
Krnjevic K, Schwartz S. 1967. The action of -aminobutyric acid on cortical neurones. Exp. Brain Res. 3:320–326.
Krueppel R, Remy S, Beck H. 2011. Dendritic integration in hippocampal dentate granule cells. Neuron. 71:512-528.
Kullmann DM. 2011. Interneuron networks in the hippocampus. Curr Opin Neurobiol. 21:709-716.
Kwag J, Paulsen O. 2009. Bidirectional control of spike timing by GABA(A) receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons. Neuroreport. 20(13):1209-1213.
Larimer P, Strowbridge BW. 2010. Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci. 13(2):213-222.
Leutgeb JK, Leutgeb S, Moser MB, Moser EI. 2007. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science. 315:961-966.
Li Y, Stam FJ, Aimone JB, Goulding M, Callaway EM, Gage FH. 2013. Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci USA. 110:9106-9111.
Liu YC, Cheng JK, Lien CC. 2014. Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci. 34:1344-1357.
Losonczy A, Magee JC. 2006. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron. 50:291–307.
Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun XH, Nicoud JF, Zemelman BV, Sternson SM, Losonczy A. 2012. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci. 15:423-430.
Marín-Burgin A, Mongiat LA, Pardi MB, Schinder AF. 2012. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science. 335:1238-1242.
Marr D. 1969. A theory of cerebellar cortex. J Physiol. 202:437-470.
McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 5:115–133.
Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF. 1996. Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 16:815-823.
Mitchell SJ, Silver RA. 2003. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 38:433–445.
Moodley KK, Chan D. 2014. The hippocampus in neurodegenerative disease. Front Neurol Neurosci. 34:95-108.
Moser E, Moser MB, Andersen P. 1993. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly presentfollowing ventral lesions. J Neurosci. 13(9):3916-3925.
Myatt DR, Hadlington T, Ascoli GA, Nasuto SJ. 2012. Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology. Front Neuroinform. 6:4.
Nadel L. 1968. Dorsal and ventral hippocampal lesions and behavior. Physiol Behav. 3:891–900.
Nitz D, McNaughton B. 2004. Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol. 91:863–872.
Nusser Z, Mody I. 2002. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol. 87(5):2624-2628.
Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14:481–487.
O'Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1):171–175.
O'Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map. Oxford University Press.
Otsuka J, Iversen LL, Hall ZW, Kravitz EA. 1966. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci USA. 56:1110-1115.
Penttonen M, Kamondi A, Acsády L, Buzsáki G. 1998. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci. 10:718-728.
Portavella M, Vargas JP, Torres B, Salas C. 2002. The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull. 57(3-4):397–399.
Pöschel B, Draguhn A, Heinemann U. 2002. Glutamate-induced gamma oscillations in the dentate gyrus of rat hippocampal slices. Brain Res. 938(1-2):22-28.
Pouille F, Marín-Burgin A, Adesnik H, Atallah BV, Scanziani M. 2009. Input normalization by global feedforward inhibition expands cortical dynamic range. Nat Neurosci. 12:1577-1585.
Pouille F, Scanziani M. 2001. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 293:1159–1163.
Ramaswamy S. 2015. Exciting times for inhibition: GABAergic synaptic transmission in dentate gyrus interneuron networks. Front Neural Circuits. 9:13.
Ransome MI1, Renoir T, Hannan AJ. 2012. Hippocampal neurogenesis, cognitive deficits and affective disorder in Huntington's disease. Neural Plast. 2012:874387.
Ribak CE, Nitsch R, Seress L. 1990. Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation. J Comp Neurol. 300:449-461.
Ribak CE. 1992. Local circuitry of GABAergic basket cells in the dentate gyrus. Epilepsy Res Suppl. 7:29-47.
Rodríguez F, López JC, Vargas JP, Broglio C, Gómez Y, Salas C. 2002. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull. 57(3-4):499–503.
Rothman JS, Cathala L, Steuber V, Silver RA. 2009. Synaptic depression enables neuronal gain control. Nature. 457:1015–1018.
Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. 2011. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 472:466–470.
Sakurai Y. 1999. How do cell assemblies encode information in the brain? Neurosci Biobehav Rev. 23:785–796.
Sambandan S, Sauer JF, Vida I, Bartos M. 2010. Associative plasticity at excitatory synapses facilitates recruitment of fast-spiking interneurons in the dentate gyrus. J Neurosci. 30:11826–11837.
Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M. 2014. Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci. 34:8197-8209.
Schmidt-Hieber C, Jonas P, Bischofberger J. 2004. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 429(6988):184-187.
Schmidt-Hieber C, Jonas P, Bischofberger J. 2007. Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci. 27:8430-8441.
Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 20(1):11–21.
Semyanov A, Walker MC, Kullmann DM. 2003. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 6(5):484-490.
Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J Neurosci. 18:3870-3896.
Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA. 2003. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci. 23:10388-10401.
Silver RA. Neuronal arithmetic. 2010. Nat Rev Neurosci. 11(7):474-489.
Sloviter RS. 1991. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the dormant basket cell hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus. 1:41–66.
Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M. 2003. “Dormant basket cell” hypothesis revisited; relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol. 459:44–76.
Somogyi P, Tamas G, Lujan R, Buhl EH. 1998. Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev. 26:113–135.
Soriano E, Nitsch R, Froscher M. 1990. Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J Comp Neurol. 293:1-25.
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J. 2013. Dynamics of hippocampal neurogenesis in adult humans. Cell. 153(6):1219-1227.
Staley KJ, Mody I. 1992. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J Neurophysiol. 68:197-212.
Stell BM, Mody I. 2002. Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci. 22(10):RC223.
Strange BA, Witter MP, Lein ES, Moser EI. 2014. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 15(10):655-669.
Tamamaki N, Nojyo Y. 1993. Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus. 3:471-480.
Tashiro A, Makino H, Gage FH. 2007. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci. 23:3252-3259.
Van Groen T, Wyss JM. 1990. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol. 302(3):515-528.
van Groen T, Miettinen P, Kadish I. 2003. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus. 13:133-149.
van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. 2002. Functional neurogenesis in the adult hippocampus. 415(6875):1030-1034.
Varela F, Lachaux JP, Rodriguez E, Martinerie J. 2001. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2(4):229–239.
Vargas JP, Bingman VP, Portavella M, López JC. 2006. Telencephalon and geometric space in goldfish. Eur J Neurosci. 24(10):2870–2878.
Vinje WE, Gallant JL. 2000. Sparse coding and decorrelation in primary visual cortex during natural vision. Science. 287:1273–1276.
Vogels TP, Abbott LF. 2005. Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci. 25:10786-10795.
Werman R, Davidoff RA, Aprison MH. 1967. Inhibition of motoneurones by iontophoresis of glycine. Nature. 214:681–683.
West MJ. 1990. Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res. 83:13–36.
Whittington MA, Traub RD. 2003. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26(12):676-682.
Wlodarczyk AI, Xu C, Song I, Doronin M, Wu YW, Walker MC, Semyanov A. 2013. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons. Front Neural Circuits. 7:205.
Xue M, Atallah BV, Scanziani M. 2014. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature. 511(7511):596-600.
Yu EP, Dengler CG, Frausto SF, Putt ME, Yue C, Takano H, Coulter DA. 2013. Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J Neurosci. 33:2947-2960.
Zheng K, Rusakov DA. 2015. Efficient Integration of Synaptic Events by NMDA Receptors in Three-Dimensional Neuropil. Biophys J. 108(10):2457-2564.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊