(18.210.12.229) 您好!臺灣時間:2021/03/01 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠文
研究生(外文):Kuan-Wen Chen
論文名稱:Withaferin A作為非小細胞肺癌的輻射增敏劑
論文名稱(外文):Withaferin A as a Potential Radiation Sensitizer in Non-small Cell Lung Cancer
指導教授:黃奇英林進清林進清引用關係
指導教授(外文):Chi-Ying HuangJin-Ching Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:Withaferin A非小細胞肺癌放射治療缺氧誘導因子
外文關鍵詞:Withaferin ANSCLCRadiationHIF-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
目的: 研究Withaferin A(WA)和游離輻射在非小細胞肺癌細胞株合併使用的生物效應。
材料及方法:
我們選用的是A549和NCI-H1299二株非小細胞肺癌細胞株;此二種細胞株具有不同的p53型式。游離輻射採用Varian 21EX的直線加速器,以六百萬電子伏特的電子射束給予。我們使用Trypan Blue Exclusion Assay來評估細胞存活率,並根據細胞存活率實驗的結果計算出WA的百分之二十抑制濃度(IC20)及百分之五十抑制濃度(IC50),並應用於之後的實驗;腫瘤生長抑制實驗將不同的WA濃度與游離輻射併用,使用群落生成法(Clonogenic Assay)。WA和游離輻射的增效作用(Synergistic Effect)則藉由群落生成法的結果經中位效應方程式(median effect equation)和組合指數(Combination Index)計算而得;彗星拖尾試驗(comet assay)和TUNEL試驗(TUNEL assay)則分別用來評估DNA損傷以及自體凋亡(apoptosis)的程度;半胱胺酸蛋白酶(Caspase)的活性是使用Caspase Colorimetric Activity Assay來評估;最後,以西方點墨法(Western Blots)及螢光染色(Fluorescence Stain)來進行蛋白質的定性及定量。
結果:
WA和游離輻射單獨使用時,均能抑制肺癌細胞株在培養皿中的生長,當劑量愈高,抑制的情形就愈明顯。而當WA和游離輻射並用時,根據計算出的組合指數 (Combination Index),可判斷出二者之間具有增效作用。WA和游離輻射並用也會使自體凋亡和DNA損傷的程度增加,半胱胺酸蛋白酶-3和半胱胺酸蛋白酶-9的活性也會顯著上升。在NCI-H1299細胞中,當4 Gy的游離輻射和WA 併用時,Bax蛋白的量會增加,而Bcl-2蛋白的量會減少。西方點墨法也確認WA和IR併用時會抑制ATM及Cdc25c的表現量。此外,在A549細胞中放射線處理後造成的 HIF-1α蛋白上升可被WA所抑制,WA也會降低β-catenin的表現量。
結論:
當WA和游離輻射併用時,具有細胞毒殺的增效作用、能抑制DNA損傷的修復機制、造成G2/M細胞阻滯(cell cycle arrest),並且抑制HIF-1α和β-catenin蛋白的表現。

Purpose: To investigate the combined biological effects of withaferin A (WA) and ionizing radiation (IR) in Non-small-cell-lung cancer (NSCLC) cell lines
Methods &; Materials:
A549 and NCI-H1299 cells, two NSCLC cell lines with different p53 status, were chosen. IR was administered with 6MeV electron beam using Varian 21EX linear accelerator. Cell viability was evaluated with trypan blue exclusion assay. IC20 and IC50 from cell viability assay were used in caspase colorimetric assay, comet assay, TUNEL assay, and Western blots. Clonogenic assay was used to evaluate tumor growth in vitro with different combination of WA and IR. Synergistic effects of WA and IR were calculated using median effect equation and combination index according to the results of clonogenic survival assays. Comet assay and TUNEL assay was used to evaluate the extent of DNA damage and apoptosis, respectively. Caspase colorimetric activity assay was used to evaluate the activities of different caspases. Protein levels were evaluated with western blots and fluorescence stain.
Results:
Both WA and IR alone could inhibit tumor growth in vitro in a dose-dependent manner. When WA was combined with IR, the inhibition of tumor growth in vitro was synergistic according to combination index. The extent of DNA damage and apoptosis both increased when WA was added to IR. When WA was combined with IR, activity of caspase-3 and 9 significantly increased compared to WA or IR alone. When 4 Gy IR was combined with WA, Bax increased and Bcl-2 decreased significantly after adding WA in NCI-H1299 cells. Western blots in both cell lines demonstrated that adding WA to IR could inhibit the activation of ATM and Cdc25c. Besides, the activation of HIF-1α after IR could be inhibited with WA in A549 cells. The level of β-catenin was also attenuated significantly after adding WA to IR in A549 cells.
Conclusion:
When combined with IR, WA had synergistic cytotoxic effects, could inhibit DNA repair mechanisms, cause G2/M cell cycle arrest, and inhibit the expression of HIF-1α and β-catenin in NSCLC cell lines

Table of Contents
1 English Abstract 4
2 Chinese Abstract 5
3 List of Abbreviations 6
4 Introduction: 7
4.1 Non-Small Cell Lung Cancer (NSCLC)– Clinical Aspects 7
4.1.1 Histological Subtype of NSCLC 7
4.1.2 Clinical stages and prognosis of NSCLC 8
4.1.3 Radiation Therapy (RT) in NSCLC 8
4.1.4 Concomitant chemoradiotherapy (CCRT) for NSCLC 8
4.1.5 Chemotherapeutic drugs in CCRT for NSCLC 8
4.2 Connectivity Map 9
4.3 Withaferin A (WA) 10
4.3.1 General Introduction of WA 10
4.3.2 The in vivo evidences of WA in inhibiting tumor growth &; chemoprevention 10
4.3.3 The potential role of WA as a therapeutic agent for cancer 10
4.4 WA as a radiation sensitizer 14
4.4.1 Rationale 14
4.4.2 Existing Evidences 15
4.5 Radiation damage and IR induced signaling pathways 15
4.5.1 IR induced DNA damage 16
4.5.2 Radiation-induced signaling pathways 16
4.6 Vimentin 17
4.7 HIF-1α 17
4.8 Wnt/β-catenin 18
5 Material and Methods 19
5.1 Experimental Instruments 19
5.2 Reagents 19
5.3 General principles 20
5.4 Protocol of IR administration 20
5.5 Cell Lines 21
5.6 Cell Culture Protocol 21
5.7 Clonogenic Survival Assay 21
5.7.1 Cell Culture Protocol 21
5.8 Cell viability analysis 22
5.8.1 Principles of trypan blue exclusion assay 22
5.8.2 Methods 22
5.9 Comet assay 23
5.9.1 The principle of comet assay 23
5.9.2 Methods 23
5.10 Terminal deoxynucleotidyltransferase (TdT) dUTP Nick End Labeling (TUNEL)Assay 24
5.11 Caspase colorimetric assay 25
5.12 Immunofluorescence stain 25
5.13 Western Blots 26
5.13.1 Protein extraction 26
5.13.2 SDS-PAGE 26
5.13.3 Transferring the protein from the gel to the membrane 26
5.13.4 Antibody incubation 27
6 Result 27
6.1 The Effect of WA on A549/NCI-H1299 Cells 27
6.1.1 WA inhibits A549/NCI-H1299 cell tumor growth in vitro 27
6.1.3 WA reduced the cell viability 28
6.1.4 WA increases the extent of DNA damages in A549/NCI-H1299 cells 28
6.1.5 WA increases apoptosis of A549/NCI-H1299 cells 28
6.1.6 WA increases the mitochondrial pathway of apoptosis in A549/NCI-H1299 cells 29
6.2 The effects of IR on A549/NCI-H1299 cells 29
6.2.1 Radiation inhibits A549/NCI-H1299 cell tumor growth in vitro 29
6.3 The combination effect of WA and IR on A549 and NCI-H1299 cell lines 29
6.3.1 Combined WA and IR increased the effect on tumor growth inhibition 29
6.3.2 WA and IR had synergistic effect according to combination index (CI) 30
6.3.3 WA increased the extent of DNA damages when combined with IR 31
6.3.4 WA increased apoptosis when combined with IR 31
6.4 Western blot &; Fluorescence Stain 32
6.4.1 A549 Cells 32
6.4.2 NCI-H1299 Cells 34
7 Discussion: 35
7.1 Clonogenic survival with or without IR 35
7.2 Cell viability and cell morphology 35
7.3 Combination of WA and IR on cell clonogenic survival, increased DNA damage, and apoptosis 36
7.4 Increased intrinsic pathway activity of apoptosis 37
7.5 Western blots 38
7.5.1 Proteins related to apoptosis 38
7.5.2 Proteins related to cell cycle control and/or DNA repair 39
7.5.3 HIF-1α, HIF-2α, β-catenin, and vimentin 39
8 Conclusions: 41
9 Perspectives 42
10 References: 43
11 Figures and Tables 51
12 Appendix 69
13 Publications 69


10 References:
1. Wahbah M, Boroumand N, Castro C, El-Zeky F, Eltorky M. Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Annals of diagnostic pathology. 2007;11(2):89-96.
2. Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR, et al. Non-small cell lung cancer, version 2.2013. Journal of the National Comprehensive Cancer Network : JNCCN. 2013;11(6):645-53; quiz 53.
3. Curran WJ, Jr., Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. Journal of the National Cancer Institute. 2011;103(19):1452-60.
4. O'Rourke N, Roque IFM, Farre Bernado N, Macbeth F. Concurrent chemoradiotherapy in non-small cell lung cancer. The Cochrane database of systematic reviews. 2010(6):Cd002140.
5. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(13):2181-90.
6. Maccio A, Madeddu C. Cisplatin : an old drug with a newfound efficacy -- from mechanisms of action to cytotoxicity. Expert opinion on pharmacotherapy. 2013;14(13):1839-57.
7. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929-35.
8. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008;26(17):2839-45.
9. Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochemical pharmacology. 2012;84(10):1282-91.
10. Szarc vel Szic K, Op de Beeck K, Ratman D, Wouters A, Beck IM, Declerck K, et al. Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PloS one. 2014;9(2):e87850.
11. Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. The AAPS journal. 2014;16(1):1-10.
12. Stan SD, Zeng Y, Singh SV. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutrition and cancer. 2008;60 Suppl 1:51-60.
13. Munagala R, Kausar H, Munjal C, Gupta RC. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis. 2011;32(11):1697-705.
14. Yang H, Shi G, Dou QP. The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from "Indian winter cherry". Molecular pharmacology. 2007;71(2):426-37.
15. Roy RV, Suman S, Das TP, Luevano JE, Damodaran C. Withaferin A, a steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells. Journal of natural products. 2013;76(10):1909-15.
16. Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PloS one. 2011;6(8):e23354.
17. Hahm ER, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer letters. 2012.
18. Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, et al. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PloS one. 2010;5(4):e10105.
19. Cai Y, Sheng ZY, Chen Y, Bai C. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer. Asian Pacific journal of cancer prevention : APJCP. 2014;15(4):1711-4.
20. Mayola E, Gallerne C, Esposti DD, Martel C, Pervaiz S, Larue L, et al. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis : an international journal on programmed cell death. 2011;16(10):1014-27.
21. Mehrotra A, Kaul D, Joshi K. LXR-alpha selectively reprogrammes cancer cells to enter into apoptosis. Molecular and cellular biochemistry. 2011;349(1-2):41-55.
22. Yang H, Wang Y, Cheryan VT, Wu W, Cui CQ, Polin LA, et al. Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PloS one. 2012;7(8):e41214.
23. Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS, et al. Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis : an international journal on programmed cell death. 2008;13(12):1450-64.
24. Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C. Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Molecular cancer therapeutics. 2010;9(1):202-10.
25. Lee J, Sehrawat A, Singh SV. Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast cancer research and treatment. 2012;136(1):45-56.
26. Kakar SS, Ratajczak MZ, Powell KS, Moghadamfalahi M, Miller DM, Batra SK, et al. Withaferin a alone and in combination with Cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PloS one. 2014;9(9):e107596.
27. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 2004;7(2):115-22.
28. Saha S, Islam MK, Shilpi JA, Hasan S. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A. In silico pharmacology. 2013;1:11.
29. Gao R, Shah N, Lee JS, Katiyar SP, Li L, Oh E, et al. Withanone-Rich Combination of Ashwagandha Withanolides Restricts Metastasis and Angiogenesis through hnRNP-K. Molecular cancer therapeutics. 2014;13(12):2930-40.
30. Kakar SS, Jala VR, Fong MY. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochemical and biophysical research communications. 2012;423(4):819-25.
31. Fong MY, Jin S, Rane M, Singh RK, Gupta R, Kakar SS. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PloS one. 2012;7(7):e42265.
32. Thaiparambil JT, Bender L, Ganesh T, Kline E, Patel P, Liu Y, et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. International journal of cancer Journal international du cancer. 2011;129(11):2744-55.
33. Woo SM, Min KJ, Kim S, Park JW, Kim DE, Kim SH, et al. Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion. Biochemical and biophysical research communications. 2014;451(3):455-60.
34. Yang Z, Garcia A, Xu S, Powell DR, Vertino PM, Singh S, et al. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PloS one. 2013;8(9):e75069.
35. Lee J, Hahm ER, Marcus AI, Singh SV. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Molecular carcinogenesis. 2013.
36. Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, et al. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free radical biology &; medicine. 2012;53(2):260-70.
37. Uma Devi P, Kamath R. Radiosensitizing effect of withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. Journal of radiation research. 2003;44(1):1-6.
38. Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK. Withaferin A enhances radiation-induced apoptosis in Caki cells through induction of reactive oxygen species, Bcl-2 downregulation and Akt inhibition. Chemico-biological interactions. 2011;190(1):9-15.
39. Yang ES, Choi MJ, Kim JH, Choi KS, Kwon TK. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicology in vitro : an international journal published in association with BIBRA. 2011;25(8):1803-10.
40. Lee HC, An S, Lee H, Woo SH, Jin HO, Seo SK, et al. Activation of epidermal growth factor receptor and its downstream signaling pathway by nitric oxide in response to ionizing radiation. Molecular cancer research : MCR. 2008;6(6):996-1002.
41. Yan Y, Hein AL, Greer PM, Wang Z, Kolb RH, Batra SK, et al. A novel function of HER2/Neu in the activation of G2/M checkpoint in response to gamma-irradiation. Oncogene. 2014;0.
42. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular cell. 2002;9(2):387-99.
43. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer research. 2001;61(10):3894-901.
44. Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Investigational new drugs. 2014.
45. Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, et al. Radiation-induced cell signaling: inside-out and outside-in. Molecular cancer therapeutics. 2007;6(3):789-801.
46. Hein AL, Ouellette MM, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (review). International journal of oncology. 2014;45(5):1813-9.
47. Kharbanda S, Saleem A, Datta R, Yuan ZM, Weichselbaum R, Kufe D. Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer research. 1994;54(6):1412-4.
48. Zhang X, Samadi AK, Roby KF, Timmermann B, Cohen MS. Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A. Gynecologic oncology. 2012;124(3):606-12.
49. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and molecular life sciences : CMLS. 2011;68(18):3033-46.
50. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature cell biology. 2008;10(3):295-305.
51. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature reviews Cancer. 2012;12(1):9-22.
52. Mazumdar J, Dondeti V, Simon MC. Hypoxia-inducible factors in stem cells and cancer. Journal of cellular and molecular medicine. 2009;13(11-12):4319-28.
53. Semenza GL. Targeting HIF-1 for cancer therapy. Nature reviews Cancer. 2003;3(10):721-32.
54. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer cell. 2004;5(5):429-41.
55. Li Y, Bi Z, Yan B, Wan Y. UVB radiation induces expression of HIF-1alpha and VEGF through the EGFR/PI3K/DEC1 pathway. International journal of molecular medicine. 2006;18(4):713-9.
56. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell. 2009;17(1):9-26.
57. Um HJ, Min KJ, Kim DE, Kwon TK. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochemical and biophysical research communications. 2012;427(1):24-9.
58. Li YJ, Wei ZM, Meng YX, Ji XR. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World journal of gastroenterology : WJG. 2005;11(14):2117-23.
59. Kaldis P, Pagano M. Wnt signaling in mitosis. Developmental cell. 2009;17(6):749-50.
60. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nature protocols. 2006;1(5):2315-9.
61. Liao W, McNutt MA, Zhu WG. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods. 2009;48(1):46-53.
62. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological reviews. 2006;58(3):621-81.
63. Hahm ER, Lee J, Singh SV. Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Molecular carcinogenesis. 2013.
64. Hahm ER, Lee J, Kim SH, Sehrawat A, Arlotti JA, Shiva SS, et al. Metabolic alterations in mammary cancer prevention by withaferin A in a clinically relevant mouse model. Journal of the National Cancer Institute. 2013;105(15):1111-22.
65. Uma Devi P, Utsumiz H, Takata M, Takeda S. Enhancement of radiation induced cell death in chicken B lymphocytes by withaferin A. Indian journal of experimental biology. 2008;46(6):437-42.
66. Kalthur G, Pathirissery UD. Enhancement of the response of B16F1 melanoma to fractionated radiotherapy and prolongation of survival by withaferin A and/or hyperthermia. Integrative cancer therapies. 2010;9(4):370-7.
67. Llanos GG, Araujo LM, Jimenez IA, Moujir LM, Bazzocchi IL. Withaferin A-related steroids from Withania aristata exhibit potent antiproliferative activity by inducing apoptosis in human tumor cells. European journal of medicinal chemistry. 2012;54:499-511.
68. Oh JH, Lee TJ, Kim SH, Choi YH, Lee SH, Lee JM, et al. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis : an international journal on programmed cell death. 2008;13(12):1494-504.
69. Zhang X, Timmermann B, Samadi AK, Cohen MS. Withaferin A Induces Proteasome-Dependent Degradation of Breast Cancer Susceptibility Gene 1 and Heat Shock Factor 1 Proteins in Breast Cancer Cells. ISRN Biochemistry. 2012;2012:1-6.
70. Flugel D, Gorlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Molecular and cellular biology. 2007;27(9):3253-65.
71. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nature cell biology. 2004;6(10):931-40.
72. Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, et al. TNF-alpha induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3beta-dependent mechanism. Molecular cancer research : MCR. 2012;10(8):1109-19.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔