跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何依婷
研究生(外文):Yi-Ting He
論文名稱:重症患者預後評分系統之比較與改善
論文名稱(外文):Compare the difference between prognostic scoring systems in ICU patients.
指導教授:唐高駿唐高駿引用關係蒲正筠蒲正筠引用關係
指導教授(外文):Gau-Jun TangChristy Pu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫務管理研究所
學門:商業及管理學門
學類:醫管學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:共病死亡率急性生理和慢性健康評估系統查爾森共病症指標
外文關鍵詞:comorbiditymortalityAPACHE IICharlson Comorbidity IndexElixhauser Comorbidity Index
相關次數:
  • 被引用被引用:2
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:加護病房患者的特質與一般住院患者差異甚大,目前國內外臨床實務上多採用預測評分系統來預測加護病房病人在院內死亡率,然多數醫療行政資料不含此評分分數,使相關研究者間接採用共病測量指數評估加護病房患者嚴重程度及預後。但僅用共病測量指數評估加護病房患者的預後,可能有所偏頗。
研究目的:比較不同共病測量指數與急性生理和慢性健康評估系統(APACHE II)預測加護病房病人長短期死亡之差異,並尋求可增加預測、評估能力的變項。
研究方法:採單一家醫院,共1608位加護病房患者的病歷資料,計算急性生理與慢性健康評分及共病測量指數;比較不同模式預測加護病房病人長短期死亡情形之差異。採羅吉斯迴歸篩選出可共同預測之變項來以增加模型預測能力,並以APACHE II預測能力為黃金標準,與建立模型預測能力進行分析、比較。
研究結果:用Charlson Comorbidity Index(CCI)或Elixhauser Comorbidity Index預測加護病房病人長短期死亡情形不如APACHE II。CCI及Elixhauser Comorbidity Index若能增加與加護病房患者死亡具相關性的預測變項可提高其預測能力;CCI略優於Elixhauser。本研究發現CCI合併年齡、性別、是否使用呼吸器變項,其預測在院內死亡、出院30天死亡、出院一年死亡之c-statistics分別為0.773 (95% CI 0.744-0.803)、0.782 (95% CI 0.755-0.809)、0.775 (95% CI 0.751-0.799),與APACHE II預測能力相當(C= 0.798、0.805、0.766)。
研究結論:CCI、Elixhauser Comorbidity Index此兩種共病測量指數對加護病房患者長、短期死亡預測能力不如APACHE II,若採用CCI合併年齡、性別、「是否使用呼吸器」變項來預測加護病房患者長短期的死亡情形較穩定且預測能力可媲美APACHE II。

BACKGROUND:Patients in intensive care units are under severe condition and their survival rate vary with time. We often use APACHE II scoring system to predict patient’s mortality rate in ICU, but those score can’t be attainable by secondary databases, like administrative data. With administrative data we can get the comorbidity index to predict general in-patients’ prognosis and survival rate. There are huge different between general in-patients and patients in ICU, so that only using comorbidity index to predict prognosis and survival rate of patient in ICU maybe biased; hence, we should take physiological changes into consideration.
OBJECTIVE:Comparison of difference between comorbidity measures and APACHE II scores for predicting of patient outcome in intensive care units.
METHOD:Collecting medical records from one particular hospital with one year. Calculating the APACHE II score and comorbidity index from those medical records. Comparing the ICU patients’ mortality in different period of time by different model. Considering the APACHE II score as the gold standard, we use logistic regression to find out what extra information we need to combine with comorbidity index, which can make us get closer to APACHE II. Finally, we use ROC curve to compare the difference in prediction.
RESULTS:In order to predict the outcome of patients in ICU, the one of single-use CCI, Elixhauser Comorbidity Index have poor ability to predict. Our reaserch find CCI, Elixhauser Comorbidity Index combining with administrative data approach to predict the outcome of patients in ICU, and the predictive ability is better when using the CCI combining with information available admission data or the Elixhauser index approach. The CCI with information of age, gender, using mechanical ventilation revealed c-statistics of 0.773 (95% CI 0.744-0.803) for in-hospital mortality, 0.782 (95% CI 0.755-0.809) for 30-day mortality, and 0.775 (95% CI 0.751-0.799) for 1-year mortality. The prediction ability is similar with APACHE II (c-statistics=0.798、0.805、0.766).
CONCUSION:In order to predict the outcome of patients in ICU, CCI and Elixhauser Comorbidity Index have poor ability to predict. Its predictive ability can be improved while combining with administrative data.
Using the CCI or the Elixhauser Comorbidity Index combining with administrative data can increase prediction ability to predict the outcome of patients in ICU.

致謝 I
中文摘要 II
ABSTRACT III
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
第一節 研究背景 1
第二節 研究問題 3
第三節 研究重要性 4
第四節 研究目的 5
第二章 文獻探討 6
第一節 共病測量方法 6
第二節 急性生理與慢性健康評分(APACHE II) 10
第三節 共病測量指數與急性生理與慢性健康評分(APACHE II)之差異 13
第三章 研究方法 20
第一節 研究資料來源 20
第二節 研究對象與資料來源 22
第三節 研究設計 24
第四節 研究假說 26
第五節 研究變項與操作型定義 27
第四章 研究結果 33
第一節 研究樣本基本特質分析 33
第二節 三種不同評分系統分數分布相關性 37
第三節 預測模型建立 38
第四節 共病測量指標與增加共同預測變項之模型表現情形 39
第五節 不同預測模型之預測死亡能力比較 44
第五章 討論 59
第一節 共病測量指數對加護病房患者的死亡預測能力 59
第二節 共病測量指數對加護病房患者的死亡預測能力的趨勢變化 61
第三節 增加共同預測變項的共病測量指標與APACHE II之預測能力分析 62
第六章 結論 65
第一節 研究結論 65
第二節 研究建議 66
第三節 研究限制 67
第七章 參考資料 68

1. Wunsch, H., D.A. Harrison, and K. Rowan, Health services research in critical care using administrative data. Journal of critical care, 2005. 20(3): p. 264-269.
2. Schneeweiss, S. and M. Maclure, Use of comorbidity scores for control of confounding in studies using administrative databases. International Journal of Epidemiology, 2000. 29(5): p. 891-898.
3. Gunning, K. and K. Rowan, ABC of intensive care: outcome data and scoring systems. BMJ: British Medical Journal, 1999. 319(7204): p. 241.
4. Ho, K., et al., Combining multiple comorbidities with Acute Physiology Score to predict hospital mortality of critically ill patients: a linked data cohort study. Anaesthesia, 2007. 62(11): p. 1095-1100.
5. Needham, D.M., et al., A systematic review of the Charlson comorbidity index using Canadian administrative databases: a perspective on risk adjustment in critical care research. Journal of critical care, 2005. 20(1): p. 12-19.
6. Quach, S., et al., A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC health services research, 2009. 9(1): p. 129.
7. Schneeweiss, S., et al., Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data. American Journal of Epidemiology, 2001. 154(9): p. 854-864.
8. Charlson, M.E., et al., A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases, 1987. 40(5): p. 373-383.
9. Elixhauser, A., et al., Comorbidity measures for use with administrative data. Medical care, 1998. 36(1): p. 8-27.
10. Quail, J.M., et al., Comparing comorbidity measures for predicting mortality and hospitalization in three population-based cohorts. BMC health services research, 2011. 11(1): p. 146.
11. Sharabiani, M.T., P. Aylin, and A. Bottle, Systematic review of comorbidity indices for administrative data. Medical care, 2012. 50(12): p. 1109-1118.
12. Knaus, W.A., et al., APACHE II: a severity of disease classification system. Critical care medicine, 1985. 13(10): p. 818-829.
13. Le Gall, J.-R., S. Lemeshow, and F. Saulnier, A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. Jama, 1993. 270(24): p. 2957-2963.
14. Lemeshow, S., et al., Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. Jama, 1993. 270(20): p. 2478-2486.
15. Christensen, S., et al., Comparison of Charlson comorbidity index with SAPS and APACHE scores for prediction of mortality following intensive care. Clinical epidemiology, 2011. 3: p. 203.
16. 王淑惠, 成人加護病房疾病嚴重度分數系統. 重症醫學雜誌, 2009. 10(3): p. 176-189.
17. Ho, K.M., et al., Estimating long-term survival of critically ill patients: the PREDICT model. PLoS one, 2008. 3(9): p. e3226.
18. Halpern, N.A. and S.M. Pastores, Critical care medicine in the United States 2000–2005: An analysis of bed numbers, occupancy rates, payer mix, and costs*. Critical care medicine, 2010. 38(1): p. 65-71.
19. 唐高駿, et al., 加護病房成本效益. 中華民國急救加護醫學會雜誌, 2005. 16(4): p. 139-145.
20. 朱育增 and 吳肖琪, 回顧與探討次級資料適用之共病測量方法. A Review of claims-based Comorbidity Measures]. 臺灣公共衛生雜誌, 2010. 29(1): p. 8-21.
21. Norena, M., et al., Adjustment of intensive care unit outcomes for severity of illness and comorbidity scores. Journal of critical care, 2006. 21(2): p. 142-150.
22. Poses, R.M., et al., Prediction of survival of critically ill patients by admission comorbidity. Journal of clinical epidemiology, 1996. 49(7): p. 743-747.
23. 國家發展委員會., 「中華民國人口推計(103至150年)」報告. 2014.
24. 朱育增, et al., 探討共病測量方法於健保次級資料之應用. 臺灣公共衛生雜誌, 2010. 29(3): p. 191-200.
25. Chu, Y.-T., Y.-Y. Ng, and S.-C. Wu, Comparison of different comorbidity measures for use with administrative data in predicting short-and long-term mortality. BMC health services research, 2010. 10(1): p. 140.
26. Luijks, H., et al., Prevalence and incidence density rates of chronic comorbidity in type 2 diabetes patients: an exploratory cohort study. BMC medicine, 2012. 10(1): p. 128.
27. Ahluwalia, S.C., et al., Change in comorbidity prevalence with advancing age among persons with heart failure. Journal of general internal medicine, 2011. 26(10): p. 1145-1151.
28. 紀玫如, 中老年人多重慢性病集群型態與醫療服務使用之相關研究. 臺灣大學衛生政策與管理研究所學位論文, 2008: p. 1-235.
29. Gijsen, R., et al., Causes and consequences of comorbidity: a review. Journal of clinical epidemiology, 2001. 54(7): p. 661-674.
30. Frenkel, W.J., et al., Validation of the Charlson Comorbidity Index in acutely hospitalized elderly adults: a prospective cohort study. Journal of the American Geriatrics Society, 2014. 62(2): p. 342-346.
31. Hemmelgarn, B.R., et al., Adapting the Charlson Comorbidity Index for use in patients with ESRD. American Journal of Kidney Diseases, 2003. 42(1): p. 125-132.
32. Deyo, R.A., D.C. Cherkin, and M.A. Ciol, Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. Journal of clinical epidemiology, 1992. 45(6): p. 613-619.
33. Romano, P.S., L.L. Roos, and J.G. Jollis, Presentation adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. Journal of clinical epidemiology, 1993. 46(10): p. 1075-1079.
34. D'Hoore, W., C. Sicotte, and C. Tilquin, Risk adjustment in outcome assessment: the Charlson comorbidity index. Methods of information in medicine, 1993. 32(5): p. 382-387.
35. van Walraven, C., et al., A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Medical care, 2009. 47(6): p. 626-633.
36. Li, B., et al., Risk adjustment performance of Charlson and Elixhauser comorbidities in ICD-9 and ICD-10 administrative databases. BMC Health services research, 2008. 8(1): p. 12.
37. Johnston, J.A., et al., Impact of different measures of comorbid disease on predicted mortality of intensive care unit patients. Medical care, 2002: p. 929-940.
38. Romano, P.S., L.L. Roost, and J.G. Jollis, Further evidence concerning the use of a clinical comorbidity index with ICD-9-CM administrative data. Journal of Clinical Epidemiology, 1993. 46(10): p. 1085-1090.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top