|
第七章、 參考文獻 1 Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery 4, 145-160 (2005). 2 Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B. &; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological reviews 51, 691-744 (1999). 3 Lee, E. S., Gao, Z. &; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. Journal of Controlled Release 132, 164-170 (2008). 4 Drummond, D. C., Zignani, M. &; Leroux, J.-C. Current status of pH-sensitive liposomes in drug delivery. Progress in lipid research 39, 409-460 (2000). 5 Kono, K. Thermosensitive polymer-modified liposomes. Advanced drug delivery reviews 53, 307-319 (2001). 6 Engin, K. et al. Extracellular pH distribution in human tumours. International Journal of Hyperthermia 11, 211-216 (1995). 7 Zhang, L., Peng, T., Cheng, S.-X. &; Zhuo, R.-X. Destabilization of liposomes by uncharged hydrophilic and amphiphilic polymers. The Journal of Physical Chemistry B 108, 7763-7770 (2004). 8 Lee, S.-M., Chen, H., Dettmer, C. M., O'Halloran, T. V. &; Nguyen, S. T. Polymer-caged lipsomes: a pH-responsive delivery system with high stability. Journal of the American Chemical Society 129, 15096-15097 (2007). 9 Ishida, T., Harashima, H. &; Kiwada, H. Liposome clearance. Bioscience reports 22, 197-224 (2002). 10 Moghimi, S. &; Patel, H. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system–the concept of tissue specificity. Advanced drug delivery reviews 32, 45-60 (1998). 11 Daemen, T. et al. Toxicity of doxorubicin entrapped within long-circulating liposomes. Journal of controlled release 44, 1-9 (1997). 12 Park, J. W. et al. Anti-HER2 immunoliposomes enhanced efficacy attributable to targeted delivery. Clinical Cancer Research 8, 1172-1181 (2002). 13 Mastrobattista, E., Koning, G. A. &; Storm, G. Immunoliposomes for the targeted delivery of antitumor drugs. Advanced drug delivery reviews 40, 103-127 (1999). 14 Gabizon, A. et al. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clinical cancer research 9, 6551-6559 (2003). 15 Hattori, Y., Kawakami, S., Yamashita, F. &; Hashida, M. Controlled biodistribution of galactosylated liposomes and incorporated probucol in hepatocyte-selective drug targeting. Journal of controlled release 69, 369-377 (2000). 16 Herbert, V. &; Zalusky, R. Interrelations of vitamin B12 and folic acid metabolism: folic acid clearance studies. Journal of Clinical Investigation 41, 1263 (1962). 17 Lee, R. J. &; Low, P. S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimica et Biophysica Acta (BBA)-Biomembranes 1233, 134-144 (1995). 18 Gabizon, A., Shmeeda, H., Horowitz, A. T. &; Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Advanced Drug Delivery Reviews 56, 1177-1192 (2004). 19 Katzung, B. G., Masters, S. B. &; Trevor, A. J. Basic &; clinical pharmacology. (2004). 20 Helmlinger, G., Yuan, F., Dellian, M. &; Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature medicine 3, 177-182 (1997). 21 Fukumura, D. &; Jain, R. K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. Journal of cellular biochemistry 101, 937-949 (2007). 22 Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. &; Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of clinical investigation 103, 159-165 (1999). 23 Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American journal of pathology 160, 985-1000 (2002). 24 Bergers, G. &; Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Reviews Cancer 3, 401-410 (2003). 25 Matsumura, Y. &; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research 46, 6387-6392 (1986). 26 Maeda, H., Matsumura, Y. &; Kato, H. Purification and identification of [hydroxyprolyl3] bradykinin in ascitic fluid from a patient with gastric cancer. Journal of Biological Chemistry 263, 16051-16054 (1988). 27 Maeda, H., Noguchi, Y., Sato, K. &; Akaike, T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Cancer Science 85, 331-334 (1994). 28 Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983-985 (1983). 29 Fang, J., Nakamura, H. &; Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews 63, 136-151 (2011). 30 Maeda, H., Wu, J., Sawa, T., Matsumura, Y. &; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release 65, 271-284 (2000). 31 Acharya, S. &; Sahoo, S. K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced drug delivery reviews 63, 170-183 (2011). 32 Akinc, A., Thomas, M., Klibanov, A. M. &; Langer, R. Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. The journal of gene medicine 7, 657-663 (2005). 33 Goldstein, J. L., Anderson, R. G. &; Brown, M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679-685 (1979). 34 Blume, G. &; Cevc, G. Liposomes for the sustained drug release in vivo. Biochimica et Biophysica Acta (BBA)-Biomembranes 1029, 91-97 (1990). 35 Sharma, A. &; Sharma, U. S. Liposomes in drug delivery: progress and limitations. International Journal of Pharmaceutics 154, 123-140 (1997). 36 Gabizon, A. et al. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Advanced Drug Delivery Reviews 24, 337-344 (1997). 37 Vemuri, S. &; Rhodes, C. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae 70, 95-111 (1995). 38 Immordino, M. L., Dosio, F. &; Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. International journal of nanomedicine 1, 297 (2006). 39 Torchilin, V. P. &; Weissig, V. Liposomes: a practical approach. (Oxford University Press, 2003). 40 Zhang, J. A. et al. Development and characterization of a novel Cremophor< sup>® EL free liposome-based paclitaxel (LEP-ETU) formulation. European journal of pharmaceutics and biopharmaceutics 59, 177-187 (2005). 41 Szoka, F. &; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences 75, 4194-4198 (1978). 42 Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Advanced drug delivery reviews 63, 161-169 (2011). 43 Pons, M., Foradada, M. &; Estelrich, J. Liposomes obtained by the ethanol injection method. International journal of pharmaceutics 95, 51-56 (1993). 44 Basu, M. K. &; Lala, S. Macrophage specific drug delivery in experimental leishmaniasis. Current molecular medicine 4, 681-689 (2004). 45 Gabizon, A. et al. Enhancement of adriamycin delivery to liver metastatic cells with increased tumoricidal effect using liposomes as drug carriers. Cancer research 43, 4730-4735 (1983). 46 Lian, T. &; Ho, R. J. Trends and developments in liposome drug delivery systems. Journal of pharmaceutical sciences 90, 667-680 (2001). 47 Nishikawa, K., Arai, H. &; Inoue, K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. Journal of Biological Chemistry 265, 5226-5231 (1990). 48 Frankel, E. Volatile lipid oxidation products. Progress in Lipid Research 22, 1-33 (1983). 49 Zamboni, W. C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clinical cancer research 11, 8230-8234 (2005). 50 Molineux, G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer treatment reviews 28, 13-16 (2002). 51 Barenholz, Y. Liposome application: problems and prospects. Current opinion in colloid &; interface science 6, 66-77 (2001). 52 Papahadjopoulos, D. et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences 88, 11460-11464 (1991). 53 Photos, P. J., Bacakova, L., Discher, B., Bates, F. S. &; Discher, D. E. Polymer vesicles in vivo: correlations with PEG molecular weight. Journal of Controlled Release 90, 323-334 (2003). 54 Daemen, T., Hofstede, G., Ten Kate, M. T., Bakker‐Woudenberg, I. A. &; Scherphof, G. L. Liposomal doxorubicin‐induced toxicity: Depletion and impairment of phagocytic activity of liver macrophages. International journal of cancer 61, 716-721 (1995). 55 Uster, P. S. &; Deamer, D. W. pH-dependent fusion of liposomes using titratable polycations. Biochemistry 24, 1-8 (1985). 56 Gad, A. E., Silver, B. L. &; Eytan, G. D. Polycation-induced fusion of negatively-charged vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 690, 124-132 (1982). 57 Mills, J. K., Eichenbaum, G. &; Needham, D. Effect of bilayer cholesterol and surface grafted poly (ethylene glycol) on pH-induced release of contents from liposomes by poly (2-ethylacrylic acid). Journal of Liposome Research 9, 275-290 (1999). 58 Maeda, M., Kumano, A. &; Tirrell, D. A. H+-induced release of contents of phosphatidylcholine vesicles bearing surface-bound polyelectrolyte chains. Journal of the American Chemical Society 110, 7455-7459 (1988). 59 Cho, E. C. et al. Role of pH-sensitive polymer–liposome complex in enhancing cellular uptake of biologically active drugs. Materials Science and Engineering: C 29, 774-778, doi:10.1016/j.msec.2008.07.014 (2009). 60 Kono, K., Zenitani, K.-i. &; Takagishi, T. Novel pH-sensitive liposomes: liposomes bearing a poly (ethylene glycol) derivative with carboxyl groups. Biochimica et Biophysica Acta (BBA)-Biomembranes 1193, 1-9 (1994). 61 Yuba, E., Kojima, C., Harada, A., Watarai, S. &; Kono, K. pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity. Biomaterials 31, 943-951 (2010). 62 Kono, K., Hayashi, H. &; Takagishi, T. Temperature-sensitive liposomes: liposomes bearing poly (< i> N-isopropylacrylamide). Journal of controlled release 30, 69-75 (1994). 63 Tagami, T., Ernsting, M. J. &; Li, S.-D. Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. Journal of Controlled Release 154, 290-297 (2011). 64 Roux, E., Lafleur, M., Lataste, É., Moreau, P. &; Leroux, J.-C. On the characterization of pH-sensitive liposome/polymer complexes. Biomacromolecules 4, 240-248 (2003). 65 Sugano, M. et al. Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer research 60, 6942-6949 (2000). 66 Hamaguchi, T. et al. Antitumor effect of MCC‐465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer science 95, 608-613 (2004). 67 Russell-Jones, G., McTavish, K., McEwan, J., Rice, J. &; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. Journal of inorganic biochemistry 98, 1625-1633 (2004). 68 Zalipsky, S., Brandeis, E., Newman, M. S. &; Woodle, M. C. Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS letters 353, 71-74 (1994). 69 Gabizon, A. et al. Targeting folate receptor with folate linked to extremities of poly (ethylene glycol)-grafted liposomes: in vitro studies. Bioconjugate chemistry 10, 289-298 (1999). 70 Goren, D. et al. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clinical Cancer Research 6, 1949-1957 (2000). 71 Saul, J. M., Annapragada, A., Natarajan, J. V. &; Bellamkonda, R. V. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. Journal of Controlled Release 92, 49-67 (2003). 72 Semple, S. C., Chonn, A. &; Cullis, P. R. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Advanced drug delivery reviews 32, 3-17 (1998). 73 Chonn, A., Semple, S. &; Cullis, P. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. Journal of Biological Chemistry 267, 18759-18765 (1992). 74 Harashima, H., Matsuo, H. &; Kiwada, H. Identification of proteins mediating clearance of liposomes using a liver perfusion system. Advanced drug delivery reviews 32, 61-79 (1998). 75 Oja, C. D., Semple, S. C., Chonn, A. &; Cullis, P. R. Influence of dose on liposome clearance: critical role of blood proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1281, 31-37 (1996). 76 Ogawara, K.-i. et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. Journal of controlled release 100, 451-455 (2004). 77 Furumoto, K. et al. Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition. International journal of pharmaceutics 329, 110-116 (2007). 78 Yokouchi, Y. et al. Effect of adsorption of bovine serum albumin on liposomal membrane characteristics. Colloids and surfaces B: Biointerfaces 20, 95-103 (2001). 79 Deng, Z. J., Liang, M., Monteiro, M., Toth, I. &; Minchin, R. F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature nanotechnology 6, 39-44 (2011). 80 Price, M., Cornelius, R. &; Brash, J. Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochimica et Biophysica Acta (BBA)-Biomembranes 1512, 191-205 (2001). 81 Nonckreman, C. J., Fleith, S., Rouxhet, P. G. &; Dupont-Gillain, C. C. Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO. Colloids and Surfaces B: Biointerfaces 77, 139-149 (2010). 82 Salmaso, S. &; Caliceti, P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. Journal of drug delivery 2013 (2013). 83 Nagayama, S., Ogawara, K.-i., Fukuoka, Y., Higaki, K. &; Kimura, T. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. International journal of pharmaceutics 342, 215-221 (2007). 84 Bajpai, A. Blood protein adsorption onto a polymeric biomaterial of polyethylene glycol and poly [(2‐hydroxyethyl methacrylate)‐co‐acrylonitrile] and evaluation of in vitro blood compatibility. Polymer international 54, 304-315 (2005). 85 Tanaka, M. et al. Blood compatible aspects of poly (2-methoxyethylacrylate)(PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials 21, 1471-1481 (2000). 86 Tanaka, M. &; Mochizuki, A. Effect of water structure on blood compatibility—thermal analysis of water in poly (meth) acrylate. Journal of Biomedical Materials Research Part A 68, 684-695 (2004). 87 Hatakeyma, T., Kasuga, H., Tanaka, M. &; Hatakeyama, H. Cold crystallization of poly (ethylene glycol)–water systems. Thermochimica Acta 465, 59-66 (2007). 88 Tanaka, M., Hayashi, T. &; Morita, S. The roles of water molecules at the biointerface of medical polymers. Polymer journal 45, 701-710 (2013). 89 Tanaka, M. et al. Cold crystallization of water in hydrated poly (2‐methoxyethyl acrylate)(PMEA). Polymer international 49, 1709-1713 (2000). 90 Ask, A., Holt, D. &; Smith, L. In vivo comparison study of FDA-approved surface-modifying additives and poly-2-methoxyethylacrylate circuit surfaces coatings during cardiopulmonary bypass. The Journal of extra-corporeal technology 38, 27-32 (2006). 91 Heise, M. et al. PEG-hirudin/iloprost coating of small diameter ePTFE grafts effectively prevents pseudointima and intimal hyperplasia development. European journal of vascular and endovascular surgery 32, 418-424 (2006). 92 Suhara, H. et al. Efficacy of a new coating material, PMEA, for cardiopulmonary bypass circuits in a porcine model. The Annals of thoracic surgery 71, 1603-1608 (2001). 93 Fritze, A., Hens, F., Kimpfler, A., Schubert, R. &; Peschka-Süss, R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 1633-1640 (2006). 94 Liu, A. L. Advances in planar lipid bilayers and liposomes. Vol. 5 (Academic Press, 2011). 95 Guinier, A., Fournet, G., Walker, C. B. &; Yudowitch, K. L. Small-angle scattering of X-rays. (1955). 96 László, K., Czakkel, O., Josepovits, K., Rochas, C. &; Geissler, E. Influence of surface chemistry on the SAXS response of polymer-based activated carbons. Langmuir 21, 8443-8451 (2005). 97 McINTOSH, T. J. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes 513, 43-58 (1978). 98 Huang, X. L., Catignani, G. L. &; Swaisgood, H. E. Immobilization of biotinylated transglutaminase by bioselective adsorption to immobilized avidin and characterization of the immobilized activity. Journal of Agricultural and Food Chemistry 43, 895-901 (1995). 99 Yang, L., Broom, M. F. &; Tucker, I. G. Characterization of a nanoparticulate drug delivery system using scanning ion occlusion sensing. Pharmaceutical research 29, 2578-2586 (2012). 100 Anderson, W., Kozak, D., Coleman, V. A., Jämting, Å. K. &; Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. Journal of colloid and interface science 405, 322-330 (2013). 101 Pelikan, P. C. et al. Acute doxorubicin cardiotoxicity: functional, metabolic, and morphologic alterations in the isolated, perfused rat heart. Journal of cardiovascular pharmacology 8, 1058-1066 (1986). 102 Bae, Y. H. &; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. Journal of Controlled Release 153, 198 (2011). 103 Saito, N., Motoyama, S. &; Sawamoto, J. Effects of new polymer‐coated extracorporeal circuits on biocompatibility during cardiopulmonary bypass. Artificial organs 24, 547-554 (2000). 104 Gunaydin, S. et al. Clinical performance and biocompatibility of poly (2-methoxyethylacrylate)—coated extracorporeal circuits. The Annals of thoracic surgery 74, 819-824 (2002). 105 Roux, E. et al. Steric stabilization of liposomes by pH‐responsive N‐isopropylacrylamide copolymer. Journal of pharmaceutical sciences 91, 1795-1802 (2002). 106 Hui, S., Kuhl, T., Guo, Y. &; Israelachvili, J. Use of poly (ethylene glycol) to control cell aggregation and fusion. Colloids and Surfaces B: Biointerfaces 14, 213-222 (1999). 107 Comiskey, S. J. &; Heath, T. D. Serum-induced leakage of negatively-charged liposomes at nanomolar lipid concentrations. Biochemistry 29, 3626-3631 (1990). 108 Liu, F. &; Liu, D. Serum independent liposome uptake by mouse liver. Biochimica et Biophysica Acta (BBA)-Biomembranes 1278, 5-11 (1996). 109 Moghimi, S. &; Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in lipid research 42, 463-478 (2003). 110 Iversen, T.-G., Skotland, T. &; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6, 176-185 (2011). 111 Sahay, G., Alakhova, D. Y. &; Kabanov, A. V. Endocytosis of nanomedicines. Journal of controlled release 145, 182-195 (2010).
|