跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫秩君
研究生(外文):Jhih-Jun Wen
論文名稱:動態髖螺釘之骨板套筒長度對於股轉子間骨折固定之穩度影響
論文名稱(外文):The effect in stability at fracture site with different barrel lengths of dynamic hip screw for intertrochanteric fracture
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:股骨轉子間骨折動態髖螺釘套筒有限元素分析
外文關鍵詞:Intertrochanteric fracturedynamic hip screwbarrelfinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
動態髖螺釘(Dynamic hip screw, DHS)為治療穩定型股骨轉子間骨折為常見的內固定器,臨床結果成功率高達90%。然而在臨床上發現部分患者使用標準套筒長度38mm的動態髖螺釘骨板,但在植入後發現套筒已經貫穿骨折面,造成髖螺釘無法滑動,喪失動態髖螺釘迫緊骨折面的功能,使骨折面無法癒合。若改用短套筒,部分患者植入後,發現由於套筒末端離骨折面距離較遠,造成髖螺釘的彎曲力矩變大,使髖螺釘折彎機率增高,骨折面的位移增高,因此本研究假設此種狀況下改使用較接近骨折面而不貫穿的套筒時骨折面可達到良好的穩定效果,進而使骨折處癒合。本研究將利用有限元素分析針對市面上兩種套筒長度38mm、25mm之動態髖螺釘骨板與本研究預設介於兩者之間套筒的長度31mm去驗證本研究假設是否正確。
本研究參考文獻建立股骨近端骨折3D有限元素模型,分別針對傳統型動態髖螺釘以及新型動態髖螺釘搭配標準38 mm、本研究假設尺寸31 mm、短筒25 mm三種套筒尺寸,共六組模型,給予正常步態髖關節的負荷,分析此六種模型於相同骨折面位置條件下,骨折面的位移量以及間隙角度之結果,對此骨折套筒長度變化的影響。
研究結果顯示使用傳統型動態髖螺釘搭配31mm長度套筒所得的位移量比25mm套筒降低25.4%;新型動態髖螺釘則降低17.2%;觀察間隙角度31mm套筒所得到的結果在兩種型式動態髖螺釘皆比25mm套筒降低18%。
經有限元素分析結果證實本研究假設是正確的,發現動態髖螺釘骨板套筒末端到骨折面的距離越短所產生的位移量越小,間隙角度也越小,進而提升骨折處的穩定度,提供骨頭良好的生長環境。建議後續可再進一步透過體外力學測試,證實此假設。

Dynamic hip screw (DHS) is the normal treatment to femoral intertrochanteric fracture, especially in stable fracture. When using a standard barrel, however, lag screw may not slide and lose its main function if the barrel length is over the fracture site. Nevertheless, a shorter barrel increase the bending moment of lag screw because of the longer distance between the fracture site and the terminal of barrel. In order to keep the lag screw function and decrease the bending moment, we design a barrel which has 31 mm length. This study analyzed 38 mm, 31 mm, and 25 mm barrel by finite element under the hypothesis that while the barrel length over the fracture site and the barrel is approach to the fracture site, the DHS can provide a better stability than the shorter one.
In this study we simulated simple intertrochanteric fracture model using 38mm, 31mm, 25mm barrel length DHS and modified DHS under one reference load (stance phase of the gait cycle). Several different situations were analyzed, and we would discuss micromotion and θof fracture site. We also compared the stability between DHS and modified DHS.
This study shows that the 31 mm DHS barrel micromotion decreases 25.4 % than 25 mm DHS barrel and 31 mm modified DHS barrel micromotion decreases 17.2 % than 25 mm modified DHS barrel. On the other hand, θ decreases 18 % in 31 mm barrel than 25 mm barrel no matter using DHS or modified DHS. Using both DHS and modified DHS, the shorter distance between the terminal end of barrel and fracture site causes the shorter micromotion and smaller θthat shows a better stability on fracture site.

目錄
致謝 I
摘要 II
Abstract IV
目錄 VI
圖錄 IX
表錄 XIII
第一章 諸論 1
1-1 前言 1
1-2 髖關節簡介 6
1-2-1髖骨解剖構造 6
1-3 股骨解剖構造 7
1-3近端股骨骨折型態 10
1-3-1 骨折位置與名稱 10
1-3-2骨折分類法 11
1-4 股骨近端固定裝置 15
1-4-1 髖螺釘演進 15
1-5 動態髖螺釘手術流程 19
1-6 文獻回顧 23
1-6-1使用動態髖螺釘於臨床上的表現 23
1-6-2 動態髖螺釘之套筒角度的設計 24
1-6-3動態髖螺釘之套筒長度的設計 26
1-7 研究動機與目的 28
第二章 材料與方法 30
2-1研究流程概述 30
2-2 有限元素法分析 32
2-3 模型的建立 33
2-3-1 動態髖螺釘模型建立 33
2-3-2 股骨模型建立 36
2-3-3 骨折面設定 37
2-4 材料性質 38
2-5元素型態 39
2-6接觸條件 41
2-7 邊界與施力條件 42
2-8 收斂測試 44
第三章 結果 45
3-1 收斂測試結果 45
3-1-1 傳統型動態髖螺釘收斂測試 45
3-1-2 新型動態髖螺釘收斂測試 48
3-2 骨折處位移量 50
3-2-1 傳統型動態髖螺釘 50
3-2-2 新型動態髖螺釘 52
3-3 骨折處彎曲勁度(Bending stiffness) 55
3-3-1 傳統型動態髖螺釘 56
3-3-2 新型動態髖螺釘 57
第四章 討論 58
4-1有限元素法在生物力學上的應用 58
4-2 股骨模型 59
4-3 骨折面設定 60
4-4 骨折處位移量 60
4-5骨折處彎曲勁度 62
4-6研究限制 64
第五章 結論與未來展望 65
5-1 結論 65
5-2 未來展望 66
參考文獻 67

圖錄
圖1-1 1950~2050年全世界60歲以上人口所占比例 2
圖1-2台灣老年人口所占比例(a)民國100年(b)民國110年 2
圖1-3 (a)健康骨骼與骨質疏鬆症比較 3
圖1-4 1996~2004年台灣健保局統計之髖部疾病 3
圖1-5 老年人常見的髖骨骨折 4
圖1-6 寬螺釘向上穿出 (a)前側觀 (b)外側觀 5
圖1-7 髖關節解剖示意圖(a)髖關節解剖(b)髖關節韌帶 6
圖1-8 髖骨解剖構造 (a)前側觀 (b)後側觀 7
圖1-9 股骨解剖構造 8
圖1-10髖外翻、髖內翻 9
圖1-11股骨前傾角 9
圖1-12近端股骨骨折分類 10
圖1-13 Evans 分類法 12
圖1-14 Jensen and Michaelson 分類法 13
圖1-15 AO/OTA 分類法 14
圖1-16固定角骨釘骨板 15
圖1-17 (a)滑動式骨釘骨板 (b)滑動式骨釘骨板組合圖 16
圖1-18 動態髖螺釘爆炸圖 18
圖1-19 動態髖髖螺釘植入之X-ray 18
圖1-20 動態髖螺釘手術流程A 19
圖1-21 動態髖螺釘手術流程B 20
圖1-22 動態髖螺釘手術流程C 20
圖1-23 動態髖螺釘手術流程D 20
圖1-24 動態髖螺釘手術流程E 21
圖1-25 動態髖螺釘手術流程F 21
圖1-26 動態髖螺釘手術流程G 21
圖1-27 動態髖螺釘手術流程H 22
圖1-28 動態髖螺釘手術流程I 22
圖1-29 Gamma nail (a)零件圖(b)植入進去之x光片 23
圖1-30 套筒與骨板間角度的設計 25
圖1-31 套筒長度標準型38mm 27
圖1-32套筒長度短筒型25mm 27
圖1-33 套筒長度超過骨折面 29
圖2-1 研究流程圖 31
圖2-2 Workbench操作介面 32
圖2-3 新型動態髖螺釘示意圖 34
圖2-4新型動態髖螺釘 (a)前視圖(b)側視圖 34
圖2-5 套筒長度的設計(mm) 35
圖2-6 去圓角之側骨板 35
圖2-7 髖螺釘前端螺紋改成圓棒狀示意圖 35
圖2-8股骨模型(a)皮質骨外觀(b)鬆質骨外觀 36
圖2-9 31-A1-1之骨折型態 37
圖2-10 骨折線切割搭配標準型38mm套筒位置示意圖 38
圖2-11 (a)31mm套筒位置示意圖(b)25mm套筒位置示意圖 38
圖2-12 股骨切割示意圖 40
圖2-13股骨模型網格四面體 40
圖2-14模型網格六面體(a)套筒與骨板(b)髖螺釘與刃片 41
圖2-15 人體解剖圖 43
圖2-16 施力條件與邊界條件 43
圖3-1 傳統型動態髖螺釘收斂測試曲線圖 46
圖3-2新型動態髖螺釘收斂測試曲線圖 48
圖3-3 骨折面產生間隙 55
圖3-4 θ定義之位置 56
圖4-1 複合股骨四點彎曲測試示意圖 59
圖4-2 複合股骨扭轉測試示意圖 59
圖4-3 傳統型動態髖螺釘位移量 61
圖4-4 新型動態髖螺釘位移量 62
圖4-5傳統型動態髖螺間隙角度 63
圖4-6新型動態髖螺間隙角度 63


表錄
表2-1 材料性質 39
表2-2 接觸條件 42
表3-1傳統型動態髖螺釘收斂分析數據 47
表3-2新型動態髖螺釘收斂分析數據 49
表3-3 傳統型動態髖螺釘搭配標準型38mm套筒之位移量(mm) 51
表3-4傳統型動態髖螺釘搭配中間型31mm套筒之位移量(mm) 51
表3-5傳統型動態髖螺釘搭配短筒型25mm套筒之位移量(mm) 52
表3-6傳統型髖螺釘最大位移量(mm) 52
表3-7新型動態髖螺釘搭配標準型38mm套筒之位移量(mm) 53
表3-8新型動態髖螺釘搭配標準型31mm套筒之位移量(mm) 53
表3-9新型動態髖螺釘搭配標準型25mm套筒之位移量(mm) 54
表3-10新型髖螺釘最大位移量(mm) 54
表3-11傳統型動態髖螺釘之θ、彎曲勁度 56
表3-12新型動態髖螺釘之θ、彎曲勁度 57

參考文獻
1. Ministry of the Interior Department of Statistics, 2013.
2. Majumdar, S. Recent trends in osteoporosis treatment after hip fracture: improving but wholly inadequate. J Rheumatology, 35(2): 190-192, 2008.
3. Clinical Epidemiology of Traumatic Orthopaedics, 2009.
4. Lai, Y. S., Wei, H. W., &; Cheng, C. K. Incidence of hip replacement among national health insurance enrollees in Taiwan. Journal of orthopaedic surgery and research, 3, 42, 2008.
5. Saudan, M., Lübbeke, A., Sadowski, C., Riand, N., Stern, R., &; Hoffmeyer, P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma, 16(6), 386-393, 2002.
6. Chirodian, N., Arch, B., &; Parker, M. J. Sliding hip screw fixation of trochanteric hip fractures: outcome of 1024 procedures. Injury, 36(6), 793-800, 2005.
7. Wu, C. C., Shih, C. H., Chen, W. J., &; Tai, C. L. Treatment of cutout of a lag screw of a dynamic hip screw in an intertrochanteric fracture. Archives of orthopaedic and trauma surgery, 117(4-5), 193-196, 1998.
8. Davis, T. R., Sher, J. L., Horsman, A., Simpson, M., Porter, B. B., &; Checketts, R. G. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg [Br], 72(1), 26-31, 1990.
9. Kim, W. Y., Han, C. H., Park, J. I., &; Kim, J. Y. Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. International orthopaedics, 25(6), 360-362, 2001.
10. Flores, L. A., Harrington, I. J., &; Heller, M. A. R. T. I. N. The stability of intertrochanteric fractures treated with a sliding screw-plate. J Bone Joint Surg [Br]e, 72(1), 37-40, 1990.
11. Harrington KD, Johnston JO. The management of comminuted unstable intertrochanteric fractures. J Bone Joint Surg, 55(7), 1367-1376, 1973.
12. Pervez, H., Parker, M. J., &; Vowler, S. Prediction of fixation failure after sliding hip screw fixation. Injury, 35(10), 994-998, 2004.
13. Madsen, J. E., Næss, L., Aune, A. K., Alho, A., Ekeland, A., &; Strømsøe, K. Dynamic hip screw with trochanteric stabilizing plate in the treatment of unstable proximal femoral fractures: a comparative study with the Gamma nail and compression hip screw. J Ortho Trauma, 12(4), 241-248, 1998.
14. Ecker, M. L., Joyce 3rd, J. J., &; Kohl, E. J. The treatment of trochanteric hip fractures using a compression screw. J Bone Joint Surg, 57(1), 23-27, 1975.
15. http://www.healthpages.org/anatomy-function/hip-structure-function-common-problems/.
16. http://en.wikipedia.org/wiki/Pelvis.
17. http://higheredbcs.wiley.com/legacy/college/tortora/0470565101/hearthis_ill/pap13e_ch08_illustr_audio_mp3_am/simulations/hear/femur.html
18. http://en.wikipedia.org/wiki/Coxa_vara#mediaviewer/File:FemurAngles.jpg
19. http://www.pt.ntu.edu.tw/hmchai/Kinesiology/KINlower/Hip.files/HipStructure.htm
20. http://www.slideshare.net/airwave12/lower-limb-fractures
21. Evans, E. M. The treatment of trochanteric fractures of the femur. J Bone Joint Surg, 31(2), 190-203, 1949.
22. Jensen, J. S., &; Michaelsen, M. Trochanteric femoral fractures treated with McLaughlin osteosynthesis. Acta Orthop, 46(5), 795-803, 1975.
23. Johnston, R. C., &; Smidt, G. L. 23 Hip Motion Measurements for Selected Activities of Daily Living. Clin Orthop Relat Res,72, 205-215, 1970.
24. Wikipedia Common, 2009, DHS
http://en.wikipedia.org/wiki/Dynamic_hip_screw
25. Regazzoni, P. D. P., Rüedi, T., Winquist, R., &; Allgöwer, M. DHS Implant System. In The Dynamic Hip Screw Implant System (pp. 5-16). Springer Berlin Heidelberg, 1985.
26. DHS/DCS Dynamic hip and condylar screw sustem.AO Foundation.
27. Bridle, S. H., Patel, A. D., Bircher, M., &; Calvert, P. T. Fixation of intertrochanteric fractures of the femur. A randomised prospective comparison of the gamma nail and the dynamic hip screw. Journal of Bone &; Joint Surgery, British Volume, 73(2), 330-334, 1991.
28. Butt, M. S., Krikler, S. J., Nafie, S., &; Ali, M. S. Comparison of dynamic hip screw and gamma nail: a prospective, randomized, controlled trial.Injury, 26(9), 615-618, 1995.
29. Regazzoni, P., Rüedi, T., Winquist, R., &; Allgöwer, M. The dynamic hip screw implant system. Springer Science &; Business Media, 1985.
30. Agrawala, S., Kohli, A., &; Bhagwat, A. Short barrel DHS plates for the treatment of intertrochanteric hip fractures in Indian population. Indian Journal of Orthopaedics, 40(4), 235, 2006.
31. Simpson, A. H. R. W., Varty, K., &; Dodd, C. A. F. Sliding hip screws: modes of failure. Injury, 20(4), 227-231,1989.
32. Nakata, K., Ohzono, K., Hiroshima, K., &; Toge, K. Serial change of sliding in intertrochanteric femoral fractures treated with sliding screw system. Archives of orthopaedic and trauma surgery, 113(5), 276-280, 1994.
33. Cristofolini, L., Viceconti, M., Cappello, A., &; Toni, A. Mechanical validation of whole bone composite femur models. Journal of biomechanics,29(4), 525-535, 1996.
34. Viceconti, M., Casali, M., Massari, B., Cristofolini, L., Bassini, S., &; Toni, A. The ‘standardized femur program’proposal for a reference geometry to be used for the creation of finite element models of the femur. Journal of biomechanics, 29(9), 1241,1996.
35. http://www.cineca.it/prometeo/stand.-fem.htm
36. Chen, W. P., Tai, C. L., Shih, C. H., Hsieh, P. H., Leou, M. C., &; Lee, M. S. Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis. Clinical Biomechanics, 19(3), 255-262, 2004.
37. Seral, B., Garcı́a, J. M., Cegonino, J., Doblare, M., &; Seral, F. Finite element study of intramedullary osteosynthesis in the treatment of trochanteric fractures of the hip: Gamma and PFN. Injury, 35(2), 130-135, 2004.
38. Sowmianarayanan, S., Chandrasekaran, A., &; Kumar, R. K. Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants—a comparative study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 222(1), 117-127, 2008.
39. http://www.37med.com/yxck/jcll/jpx/201212/12874.html
40. http://z0mbie.host.sk/Intertrochanteric-Hip-Fractures.html
41. 黃財丁.由統計資料看人口老化問題,政策研究指標資料庫, 2013.
42. International osteoporosis foundation, 2012.
43. Mahomed, M. N., Harrington, I. J., &; Hearn, T. C. Biomechanical analysis of the Medoff sliding plate. Journal of Trauma and Acute Care Surgery, 48(1), 93, 2008.
44. Wilson, H. J., Rubin, B. D., Helbig, F. E., Fielding, J. W., &; Unis, G. L. Treatment of Intertrochanteric Fractures with the Jewett Nail: Experience With 1,015 Cases. Clinical orthopaedics and related research, 148, 186-191, 1980.
45. Narang Medical Limited, ’’ Jewett Nail Plate
http://www.orthopaedic-implants.com/dhs-dcs-angled-blade-plates/jewett-nail-plates/jewett-nail-plates.php#jewett-nail-plates-130
46. Saarenpää, I., Heikkinen, T., Ristiniemi, J., Hyvönen, P., Leppilahti, J., &; Jalovaara, P. Functional comparison of the dynamic hip screw and the Gamma locking nail in trochanteric hip fractures: a matched-pair study of 268 patients. International orthopaedics, 33(1), 255-260, 2009.
47. Kim, D. O., Jung, J. H., &; Yoon, K. S. Treatment of unstable intertrochanteric fracture using short barrel compression hip screws and a trochanteric stabilizing plate. Journal of the Korean Orthopaedic Association,45(2), 101-106, 2010.
48. Wang, C. J., Yettram, A. L., Yao, M. S., &; Procter, P. Finite element analysis of a Gamma nail within a fractured femur. Medical engineering &; physics, 20(9), 677-683, 1998.
49. Sitthiseripratip, K., Van Oosterwyck, H., Vander Sloten, J., Mahaisavariya, B., Bohez, E. L. J., Suwanprateeb, J &; Oris, P. Finite element study of trochanteric gamma nail for trochanteric fracture. Medical engineering &; physics, 25(2), 99-106, 2003
50. Sim, E., Freimüller, W., &; Reiter, T. J. Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implants. Injury, 26(7), 445-449, 1995.
51. Mann, K. A., Bartel, D. L., Wright, T. M., &; Burstein, A. H. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model. Journal of Biomechanics, 28(9), 1067-1078, 1995.
52. Cody, D. D., Gross, G. J., Hou, F. J., Spencer, H. J., Goldstein, S. A., &; Fyhrie, D. P. Femoral strength is better predicted by finite element models than QCT and DXA. Journal of biomechanics, 32(10), 1013-1020, 1999.
53. Testi, D., Viceconti, M., Baruffaldi, F., &; Cappello, A. Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis. Computer methods and programs in biomedicine, 60(1), 23-33, 1999.
54. Bergmann, G., Graichen, F., &; Rohlmann, A. Hip joint loading during walking and running, measured in two patients. Journal of biomechanics, 26(8), 969-990, 1993.
55. Crowninshield, R. D., &; Brand, R. A. A physiologically based criterion of muscle force prediction in locomotion. Journal of biomechanics, 14(11), 793-801, 1981.
56. Verdonschot, N., &; Huiskes, R. Acrylic cement creeps but does not allow much subsidence of femoral stems. Journal of Bone &; Joint Surgery, British Volume, 79(4), 665-669, 1997.
57. Augat, P., Burger, J., Schorlemmer, S., Henke, T., Peraus, M., &; Claes, L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. Journal of orthopaedic research, 21(6), 1011-1017, 2003.
58. 廖瑞廷(2011),新型動態髖骨螺釘之有限元素分析及生物力學測試,國立陽明大學醫學工程所碩士學位論文。
59. Park, S. H., O'CONNOR, K. I. M., McKellop, H., &; Sarmiento, A. The influence of active shear or compressive motion on fracture-healing. The Journal of Bone &; Joint Surgery, 80(6), 868-78, 1998.
60. Gargan, M. F., Gundle, R., &; Simpson, A. H. How effective are osteotomies for unstable intertrochanteric fractures?. Journal of Bone &; Joint Surgery, British Volume, 76(5), 789-792, 1994.
61. Arastu, M. H., Phillips, L., &; Duffy, P. An unusual failure of a sliding hip screw in the immediate post-operative period. Injury Extra, 44(2), 23-27, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top