跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭翔駿
研究生(外文):Siang-Jyun Jheng
論文名稱:可客製化之視覺回饋型上肢復健訓練儀器之研發
論文名稱(外文):Development of a customizable visual feedback device for upper limb rehabilitation
指導教授:游忠煌
指導教授(外文):Chung-Huang Yu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:112
中文關鍵詞:居家復健上肢失能客製化視覺回饋
外文關鍵詞:Home programUpper limb disabilityCustomizedVisual feedback
相關次數:
  • 被引用被引用:1
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
上肢功能在日常生活中扮演重要腳色,若上肢功能受損則會對日常功能性活動造成影響;在復健醫學臨床中,神經性疾病為常見造成上肢失能的原因,大部分因神經性疾病造成上肢功能缺損的患者須接受短期或長期復健,以達到恢復功能性動作進而提高生活品質。然而,目前臨床治療師人力不足而且所使用之傳統復健訓練器材或是居家復健所開設之運動內容,大多缺少回饋機制提供患者動作回饋,且其他相關研究之虛擬實境復健內容無法結合治療師專業或針對患者本身狀況提供客製化需求;因此,目前復健醫學領域亟需開發能自由設定動作模式,並能於治療師不在身旁監督時,能提供正確回饋並記錄使用者的動作品質之儀器,其不僅可拉長患者自我訓練的時間,並能避免患者自行練習時容易出現的代償或是錯誤動作,進而提高復健效率。
本研究之目的為開發一項可結合治療師專業的復健儀器,為上肢失能者客製化其訓練動作,且能提供即時視覺回饋,使上肢失能者能在無專業人員監督情況下亦能正確的自主訓練,減少因重複執行錯誤訓練動作而造成傷害的機會,並能記錄訓練狀況,提供治療師做為調整復健內容的依據。
本研究採用慣性感測器、嵌入式系統與遊戲引擎開發可客製化之視覺回饋型上肢復健訓練儀器,以可根據患者需求調整其適合的復健內容為設計理念;經硬體精準度測試及軟體適用性證明後,建立了此系統之高信度、效度以及對於人體之適用性。
此外,本研究應用臨床實驗方式,分別探討不同種動作、不同視角及是否給予跟隨軌跡提示等情況中,對於受試者執行動作時空間偏移量之影響,並徵求健康年輕人與中風患者進行臨床實驗。
實驗結果顯示,受試者執行較複雜之動作任務時,其空間偏移量皆會較簡單動作時大。此外,對於健康受試者及中風患者而言,給予正視(鏡面)視角與斜視(45°)視角可使患者做出近似目標動作。
因此,若期望做出與目標動作相同的結果,應給予前視(鏡面)或斜視(45°)視角回饋。最後,研究結果指出,有無跟隨軌跡線輔助,對於健康受試者或是中風患者,其動作空間偏移量差異皆在一公分以內,並無明顯影響,因此在製作復健內容時對於動作功能較高之中風患者並不需要跟隨軌跡線輔助。
總結以上,本研究所開發之可客製化視覺回饋型上肢復健訓練儀器,具備可客製化、可提供正確視覺回饋及高信效度等特點,若未來被應用於醫療院所及居家復健,應能輔助治療師於臨床執行上肢訓練,使病患在居家或社區能正確的執行復健處方,增進其復健成效。

Motor function of upper limb plays an important role in daily life. In addition, impairment of upper limb function may lead a seriously impact on activities of daily life (ADL). Neurological disease is a common cause of upper limb disability and most of them need short term or long term rehabilitation to achieve functional recovery and improve quality of life.
However, the shortage of therapist and most of equipment used in rehabilitation are non-feedback type cause the limited rehabilitation effects. Moreover, previous study of virtual reality also couldn’t combine the professional knowledge of physical therapist to provide customized programs. Therefore, it is urgent to develop an instrument which can be set with all kind of movement and offer the feedback. If it is used in clinical treatment, it not only prolong the rehabilitation period, but avoiding the compensate movement for patients to improve the effectiveness of rehabilitation. The aim of this research is to develop an upper limb rehabilitation instrument can provide real time visual feedback, recoding the performance and the training program is customizable
This instrument is combined with inertial measurement unit (IMU), embedded system, and customizable program. The most important thing is that the high reliability and validity to the human body of this instrument were proved in this study. Besides, experiment was also designed to investigate the effects of different movement, plane of view and whether the movement trajectory was provided or not on movement pattern correlation and the spatial deviation in healthy and individuals with Stroke.
The results showed that the movement correlation more decreased and the spatial deviation more increased while executed complex task. Moreover, subjects performed the best complex movement pattern and less spatial deviation in mirror or inclined 45° view offerd condition. The last, there are no difference in whether the movement trajectory showed or not on both movement pattern and spatial deviation in healthy and stroke patients.
In the conclusion, the customizable visual feedback device for upper limb rehabilitation contains the features including customizable, can offer real time feedback, high reliability and validity. Thus it is suitable to applicate in clinical or home-based rehabilitation program.

中文摘要 i
Abstract iii
誌 謝 v
圖目錄 ix
表目錄 xiii
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 5
第二章 文獻回顧 6
2-1 傳統復健內容 6
2-1-1 傳統復健手法 6
2-1-2 傳統臨床上肢復健工具 8
2-2 居家復健 9
2-3 虛擬實境應用於臨床復健 11
2-3-1 虛擬實境應用於復健治療之訓練內容 12
2-3-2 虛擬實境復健之動作捕捉方式 18
2-3-3 各項感測器之特性 21
2-4 文獻回顧總結 26
第三章 研究方法 28
3-1 系統設計與建置 28
3-1-1 系統開發概念 28
3-1-2 系統架構 29
3-1-3 硬體架構 30
3-1-4 姿態表示法 38
3-1-5 軟體架構 42
3-2系統驗證 49
3-2-1 硬體驗證 49
3-2-2 人體驗證-再測信度 51
3-2-3 人體驗證-共同效度 58
3-2-4 視覺回饋效果驗證 62
3-3 臨床應用實驗 67
3-4 實驗資料處理與分析 70
第四章 結果 71
4-1 硬體驗證 71
4-2 人體驗證-再測信度 73
4-3 人體驗證-共同效度 75
4-4 視覺回饋效果驗證 78
4-5 臨床應用實驗 80
第五章 討論 84
5-1 硬體驗證討論 84
5-2 人體驗證-再測信度討論 85
5-3 人體驗證-共同效度討論 85
5-4 視覺回饋驗證討論 86
5-5 臨床應用實驗討論 87
5-6 臨床價值探討 89
5-7 研究限制與未來方向 89
第六章 結論 91
參考文獻 92
附錄一 96
附錄二 97
附錄三 100
附錄四 103

圖目錄
圖2-1、臨床常見的上肢復健工具[22] 9
圖2-2、Wii sport遊戲內容[42] 13
圖2-3、cooking mama package遊戲實況[43] 13
圖2-4、章魚泡泡遊戲實況[44] 14
圖2-5、Lange圑隊開發內容[14] 15
圖2-6、VRRS內容[13] 16
圖2-7、使用Wii遊戲時容易產生代償動作[42] 22
圖2-8、Kinect 校正姿勢[14] 23
圖3-1、系統架構圖 30
圖3-2、硬體架構圖 31
圖3-3、母板(Master) 32
圖3-4、子板(Slave) 32
圖3-5、子板與外接按鍵 32
圖3-6、感測器放置於捲尺上 33
圖3-7、嵌入式系統端運作流程圖 37
圖3-8、NED座標系[51] 38
圖3-9、尤拉角以飛機為例[54] 40
圖3-10、軟體架構圖 43
圖3-11、場景1-配置 43
圖3-12、場景2-錄製居家復健訓練動作 44
圖3-13、場景2-選擇儲存目錄 45
圖3-14、場景3-提供視覺回饋 45
圖3-15、場景3開始執行訓練動作 45
圖3-16、記錄訓練動作過程 46
圖3-17、場景1流程圖 46
圖3-18、場景2流程圖 47
圖3-19、場景3流程圖 47
圖3-20、場景3-Recode Training Data副程式 48
圖3-21、硬體驗證實驗設備 51
圖3-22、肩屈曲[58] 54
圖3-23、肩外展[58] 54
圖3-24、肩外轉[58] 55
圖3-25、肘屈曲[58] 55
圖3-26、前臂旋後[58] 56
圖3-27、慣性感測器位置圖 57
圖3-28、反光球與慣性感測器位置圖 61
圖3-29、反光球與慣性感測器實際位置圖 61
圖3-30、視覺回饋驗證實驗流程設計 64
圖3-31、動作軌跡示意圖 67
圖3-32、臨床應用實驗設計 69
圖附1-1、雙和醫院同意臨床試驗證明書 96
圖附3-1、Yaw角度變化圖 100
圖附3-2、Yaw重疊圖與相關性 100
圖附3-3、Pitch角度變化圖 101
圖附3-4、Pitch90度重疊圖與相關性 101
圖附3-5、Roll角度變化圖 102
圖附3-6、Roll重疊圖與相關性 102
圖附4-1、1號受試者肩屈曲角度變化圖 103
圖附4-2、2號受試者肩屈曲角度變化圖 103
圖附4-3、3號受試者肩屈曲角度變化圖 103
圖附4-4、肩屈曲重疊圖與相關性 104
圖附4-5、1號受試者肩外展角度變化圖 105
圖附4-6、2號受試者肩外展角度變化圖 105
圖附4-7、3號受試者肩外展角度變化圖 105
圖附4-8、肩外展重疊圖與相關性 106
圖附4-9、受試者1號肩外轉角度變化圖 107
圖附4-10、2號受試者肩外轉角度變化圖 107
圖附4-11、3號受試者肩外轉角度變化圖 107
圖附4-12、肩外轉重疊圖與相關性 108
圖附4-13、1號受試者肘屈曲角度變化圖 109
圖附4-14、2號受試者肘屈曲角度變化圖 109
圖附4-15、3號受試者肘屈曲角度變化圖 109
圖附4-16、肘屈曲重疊圖與相關性 110
圖附4-17、1號受試者前臂旋後角度變化圖 111
圖附4-18、2號受試者前臂旋後角度變化圖 111
圖附4-19、3號受試者前臂旋後角度變化圖 111
圖附4-20、前臂旋後重疊圖與相關性 112

表目錄
表2-1、常見各學派之觀念[21] 7
表2-2、虛擬實境之訓練內容比較 17
表2-3、常見感測系統之元件與方式 20
表2-4、常見感測系統之特性 25
表3-1、尤拉角的各種稱呼方式 39
表4-1、各平面動作角度之量測結果與相關性 72
表4-2、人體驗證-再測信度受試者基本資料 73
表4-3、人體驗證-再測信度結果 74
表4-4、人體驗證-共同效度 75
表4-5、三位受試者執行肩關節屈曲時量測到之角度 76
表4-6、三位受試者執行肩關節外展時量測到之角度 76
表4-7、三位受試者執行肩關節外轉時量測到之角度 76
表4-8、三位受試者執行肘關節屈曲時量測到之角度 77
表4-9、三位受試者執行前臂旋後時量測到之角度 77
表4-10、視覺回饋效果驗證受試者基本資料 78
表4-11、視覺回饋效果驗證結果 79
表4-12、臨床應用實驗受試者基本資料 80
表4-13、不同動作下各受試者之空間偏移量 81
表4-14、不同狀況下各受試者執行肩關節屈曲之空間偏移量 82
表4-15、不同狀況下各受試者執行寫數字2任務之空間偏移量 83
表5-1、Dancey and Reidy's categorization of correlation 84

1. American Heart Association home page. http: //www.americanheart.org, Accessed October 3, 2006.
2. Van der Lee, J.H., et al., Forced use of the upper extremity in chronic stroke patients results from a single-blind randomized clinical trial. Stroke, 1999. 30(11): p. 2369-2375.
3. Meara, J. and W.C. Koller, Parkinson's Disease and Parkinsonism in the Elderly. 2000: Cambridge University Press.
4. National Collaborating Centre for Chronic Conditions, Parkinson's disease: national clinical guideline for diagnosis and management in primary and secondary care. 2006. Royal College of Physicians.
5. Rosenstein, L., et al., Effects of Combined Robotic Therapy and Repetitive Task Practice on Upper-Extremity Function in a Patient With Chronic Stroke. Therapy, 2008. 62: p. 000-000.
6. Murray, T.A., et al., The effects of extended play on professional baseball pitchers. The American journal of sports medicine, 2001. 29(2): p. 137-142.
7. Carod-Artal, F.J. and J.A. Egido, Quality of life after stroke: the importance of a good recovery. Cerebrovascular diseases, 2009. 27(Suppl. 1): p. 204-214.
8. Kwon, S.U., et al., Ischemic stroke in Korean young adults. Acta neurologica scandinavica, 2000. 101(1): p. 19-24.
9. Langhorne, P., F. Coupar, and A. Pollock, Motor recovery after stroke: a systematic review. The Lancet Neurology, 2009. 8(8): p. 741-754.
10. Ma, H.-I., et al., Trunk–arm coordination in reaching for moving targets in people with Parkinson’s disease: Comparison between virtual and physical reality. Human movement science, 2012. 31(5): p. 1340-1352.
11. Rand, D., N. Katz, and P. Weiss, Intervention using the VMall for improving motor and functional ability of the upper extremity in post stroke participants. European journal of physical and rehabilitation medicine, 2009. 45(1): p. 113-121.
12. Saposnik, G., et al., Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation a pilot randomized clinical trial and proof of principle. Stroke, 2010. 41(7): p. 1477-1484.
13. Turolla, A., et al., Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of neuroengineering and rehabilitation, 2013. 10(1): p. 85.
14. Lange, B., et al., Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2011. 2011: p. 1831-4.
15. Thrane, G., et al., A meta-analysis of constraint-induced movement therapy after stroke. Journal of rehabilitation medicine, 2014. 46(9): p. 833-842.
16. Wu, C.-y., et al., Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabilitation and neural repair, 2011. 25(2): p. 130-139.
17. Salbach, N., et al., A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clinical rehabilitation, 2004. 18(5): p. 509-519.
18. Dean, C.M., C.L. Richards, and F. Malouin, Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Archives of physical medicine and rehabilitation, 2000. 81(4): p. 409-417.
19. Sheffler, L.R. and J. Chae, Neuromuscular electrical stimulation in neurorehabilitation. Muscle &; nerve, 2007. 35(5): p. 562-590.
20. O'Sullivan, S.B., T.J. Schmitz, and G. Fulk, Physical rehabilitation. 2013: FA Davis.
21. 亭妤, 中樞神經系統疾病各種復健治療方式的簡介和討論. 物理治療相關資訊及心得, 2011.
22. 李傳房、黃嵐鈴與陳美香, 中風患者使用上肢復健產品之調查. 科技學刊, 中華民國99年8月. 19(2): p. 103-114.
23. Gillespie, L.D., et al., Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev, 2009. 2(CD007146).
24. Thomas, S., S. Mackintosh, and J. Halbert, Does the ‘Otago exercise programme’reduce mortality and falls in older adults?: a systematic review and meta-analysis. Age and ageing, 2010: p. 102.
25. Cakit, B.D., et al., Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study. American Journal of Physical Medicine &; Rehabilitation, 2010. 89(6): p. 446-457.
26. Solari, A., et al., Physical rehabilitation has a positive effect on disability in multiple sclerosis patients. Neurology, 1999. 52(1): p. 57-57.
27. DeBolt, L.S. and J.A. McCubbin, The effects of home-based resistance exercise on balance, power, and mobility in adults with multiple sclerosis. Archives of physical medicine and rehabilitation, 2004. 85(2): p. 290-297.
28. Jack, D., et al., Virtual reality-enhanced stroke rehabilitation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2001. 9(3): p. 308-318.
29. Merians, A.S., et al., Virtual reality–augmented rehabilitation for patients following stroke. Physical therapy, 2002. 82(9): p. 898-915.
30. Brütsch, K., et al., Research Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. 2010.
31. Holden, M.K., Virtual environments for motor rehabilitation: review. Cyberpsychology &; behavior, 2005. 8(3): p. 187-211.
32. Holden, M.K. and T. Dyar, Virtual environment training: a new tool for neurorehabilitation. Journal of Neurologic Physical Therapy, 2002. 26(2): p. 62-71.
33. Holden, M.K. and E. Todorov, Use of virtual environments in motor learning and rehabilitation. Handbook of virtual environments: Design, implementation, and applications, 2002. 44: p. 1-35.
34. Rizzo, A., et al. Virtual environment applications in clinical neuropsychology. in Virtual Reality, 2000. Proceedings. IEEE. 2000. IEEE.
35. Rose, F., et al., Virtual environments in brain damage rehabilitation: a rationale from basic neuroscience. Studies in health technology and informatics, 1998: p. 233-242.
36. Cirstea, C., A. Ptito, and M. Levin, Feedback and cognition in arm motor skill reacquisition after stroke. Stroke, 2006. 37(5): p. 1237-1242.
37. Shema, S.R., et al., Clinical Experience Using a 5-Week Treadmill Training Program With Virtual Reality to Enhance Gait in an Ambulatory Physical Therapy Service. Physical therapy, 2014.
38. McEwen, D., et al., Virtual Reality Exercise Improves Mobility After Stroke An Inpatient Randomized Controlled Trial. Stroke, 2014. 45(6): p. 1853-1855.
39. Cho, G.H., G. Hwangbo, and H.S. Shin, The effects of virtual reality-based balance training on balance of the elderly. Journal of physical therapy science, 2014. 26(4): p. 615.
40. Badarny, S., et al., Virtual Reality Feedback Cues for Improvement of Gait in Patients with Parkinson's Disease. Tremor and Other Hyperkinetic Movements, 2014. 4.
41. Kim, S.-S., et al., The Effects of VR-based Wii Fit Yoga on Physical Function in Middle-aged Female LBP Patients. Journal of physical therapy science, 2014. 26(4): p. 549.
42. Nintendo, Wii Sports. http://www.nintendo.com/games/detail/1OTtO06SP7M52gi5m8pD6CnahbW8CzxE
43. Nintendo, Mama's 2-Pack. https://www.nintendo.com/games/detail/PHA3TmPVR1h71K-lZw_cZAnSf3I6clxa.
44. Ustinova, K.I., et al., Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI. J Neuroeng Rehabil, 2011. 8: p. 61.
45. Zhou, H. and H. Hu, Human motion tracking for rehabilitation—A survey. Biomedical Signal Processing and Control, 2008. 3(1): p. 1-18.
46. 胡明霞, 動作控制與動作學習. 第四版. 新北市: 金名圖書, 2013.
47. PNI Sensor Corporation, SpacePoint Scout User Manual r03. http://www.pnicorp.com/download/408/294/SpacePoint%20Scout%20User%20Manual%20r03.pdf, 2013.
48. NXP, PCA9546A. http://www.nxp.com/documents/data_sheet/PCA9546A.pdf, 2014.
49. Cypress Semiconductor Corporation, Datasheet – PSoC® 5LP CY8C58LP Programmable System-on-Chip. http://www.cypress.com/?docID=49437, 2014.
50. Shuster, M.D., A survey of attitude representations. Navigation, 1993. 8(9).
51. Qniemiec, RPY angles of ships and other sea vehicles. http://en.wikipedia.org/wiki/Axes_conventions#mediaviewer/File:RPY_angles_of_ships.png.
52. Bourg, D.M., 電玩物理學. 2002: O'Reilly Taiwan.
53. Winter, D.A., Biomechanics and motor control of human movement. 2009: John Wiley &; Sons.
54. Robotics, C., Understanding Euler Angles. http://www.chrobotics.com/library/understanding-euler-angles.
55. Gossip. Computer Graphics: 四元數與旋轉.
56. Space, E., Maths - Conversion Quaternion to Euler. http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/.
57. Technologies, U. Unity - Game Engine. 2014.
58. Golgeon Group Inc, Medical Exhibits. http://www.medicalexhibits.com/, 2014.
59. Fleiss, J., The Design and Analysis of Clinical Experiments. 1986, Taylor &; Francis.
60. Barker, S., et al., Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Medical engineering &; physics, 2006. 28(5): p. 460-467.
61. Dancey, C.P. and J. Reidy, Statistics without maths for psychology. 2007: Pearson Education.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top