跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳靜圓
研究生(外文):Jing-Yuan Chen
論文名稱:老化造成腦部結構改變與轉彎行走時皮質活性之影響
論文名稱(外文):Aging Induced Changes in Brain Structure and Aging Effect on Cortical Activity while Circuit Turning
指導教授:楊雅如楊雅如引用關係
指導教授(外文):Yea-Ru Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:老化轉彎功能性近紅外光光譜儀步態
外文關鍵詞:agingturningfunctional near-infrared spectroscopy;fNIRSgait
相關次數:
  • 被引用被引用:1
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:健康的老化過程中包含多方面的退化,老化使腦部結構改變導致神經網絡傳遞訊息的效率降低,可能影響功能表現。過去研究發現行走時前額葉、前動作區、動作輔助區的皮質活化程度會明顯增加,功能性近紅外光光譜儀可以在動作當下量測皮質活化情形,以有氧血紅素上升與去氧血紅素下降作為皮質活化的指標。轉彎行走是生活中重要的功能性行走,過去研究大多探討轉彎行走時的動作表現,老年人與年輕人的步態表現不同,並且轉彎行走是較複雜困難的任務,需要全身動作的協調於平衡控制,因此可能誘發更多的大腦皮質活化來完成動作,但目前關於老化造成大腦結構變化影響轉彎行走表現的探討仍然未知。
研究目的:探討老化造成腦部結構改變與轉彎行走時皮質活性之影響。
研究方法:此為橫斷式探索型研究,共計收取18名健康老年人為實驗組,25名健康年輕人作為對照組,在一般速度與最快的行走速度下分別執行直走、順時針轉彎、逆時針轉彎之行走任務,並使用功能性近紅外光光譜儀量測兩側前額葉、前動作區、動作輔助區之血氧變化,並且同步攝影記錄步態表現,步態參數有速度與步頻,比較轉彎造成的步態變化與皮質活化程度之改變。另以磁振造影之T1權重影像分析灰質結構,以及擴散張量影像之部分非等向性數值量化白質神經纖維束之完整性。
統計分析: 本研究資料以社會科學統計套裝軟體19.0版本進行統計分析。基本資料數值使用獨立t檢定或卡方檢定分析兩組受試者之基本資料,統計顯著水準訂為0.05。各腦區之皮質活化程度的變化量資料利用獨立樣本t檢定檢驗兩組間差異,並使用Bonferroni校正的事後檢定法校正顯著水準,各腦區之皮質活化程度變化量的顯著水準校正後為0.0035。速度變化量和步頻使用獨立樣本t檢定檢驗兩組間差異,統計顯著水準訂為0.05。
結果:老年人組的灰質體積在兩側的額葉、兩側的中央回前側皮質顯著少於年輕人組(p<0.05),右側的額葉、右側的中央回前側皮質在顯著水準調降至0.01後仍具有顯著差異,中扣帶回皮質兩組亦有顯著差異(p<0.05),兩族群白質結構的部分非等相性數值無顯著差異。年輕人與老年人執行一般速度順時針轉彎時,在右腦的前額葉、兩側的動作輔助區,年輕人組的去氧血紅素變化值顯著大於老年人組;一般速度逆時針轉彎時,在右側的前額葉、兩側的動作輔助區、左腦前動作區的後側,年輕人組的去氧血紅素變化值顯著大於老年人組;最快速度順時針轉彎、逆時針轉彎時,在兩側的動作輔助區、左腦前動作區的後側、右腦的前動作區有組間顯著差異(p<0.0035),年輕人組的去氧血紅素變化值大於老年人組。最快速度下進行任務時,逆時針轉彎的速度變化老年人組顯著低於年輕人組。
結論:轉彎需要更高程度的皮質活化,由於老年人灰質體積的減少,造成老年人轉彎時無法誘發更高程度的皮質活化執行任務,最快速度逆時針轉彎時老年人速度下降的程度較少。

Background: In the process of aging involves many domains, including changes in brain structures. Aging results in declined efficiency of signal transmission on neural network, and it may further impact on functional performance. Many lines of evidence suggested that premotor cortex, prefrontal cortex and supplementary motor area have increased activity while walking. Functional near-infrared spectroscopy can detect the changes of oxygenated hemoglobin and deoxygenated hemoglobin concentration while conducting dynamic tasks. Increasing oxygenated hemoglobin or decreasing deoxygenated hemoglobin is the predictor of cortical activity. Furthermore, turning is an important functional ambulation task in our daily living. Past studies mostly investigated on motor analysis. There are still unclear about cortical activity while turning. Turning is a complicate and difficult walking task. It needs sufficient coordination of whole body and balance control. As a result, turning may evoke higher cortical activation to accomplish the motion. However, it is still unknown about the effects of aging induced brain changes on turning performance.
Purpose: To investigate aging induced changes in brain structure and aging Effect on cortical activity while circuit turning.
Methods: Twenty-five healthy young adults and eighteen healthy older adults were recruited in the present study. All participants had to perform three tasks, including straight walking, clockwise circuit turning, and counter-clockwise circuit turning with both comfortable walking speed and the fastest speed. Brain activation was measured during walking and turning using functional near-infrared spectroscopy to monitor the hemodynamic response over bilateral premotor areas, prefrontal areas and supplementary motor areas. Gait parameters including speed and cadence were also collected. T1 weighted image and diffused tensor image was collect by 3T Siemens Tim trio magnetic resonance scanner for quantifying gray matter volume and integrity of white matter.
Statistical analysis: Data were analyzed with SPSS 19.0 software. Independent-t test or Chi-square test was used to compare the basic data of participants. The significant level was set at 0.05. The comparison of turning effect to changes on cortical activity on each channel was analyzed by independent-t sample test and Bonferroni correction was used to adjust the significant level to 0.0035. Independent-t test was used to analyze gait parameters. A p value of less than 0.05 was considered to indicate statistical significance.
Result: Gray matter volume of older adults over bilateral frontal lobes, precentral cortexs and middle cingulate gyrus was significant less than that of young adults. The older adults have relatively less change value of deoxygenated hemoglobin than young adults over right prefrontal cortex and bilateral premotor cortex while clockwise circuit turning with comfortable speed. The older adults have relatively less change value of deoxygenated hemoglobin than young adults over the right prefrontal cortex, bilateral premotor cortex and left supplementary motor areas while counter-clockwise circuit turning with comfortable speed. In the fastest speed, turning evoke relatively higher cortical activity changes over bilateral premotor cortex, bilateral supplementary motor areas in the young adults. While conducting counter-clockwise turning with the fastest speed, older adults have less changes on speed comparing with young adults.
Conclusion: Turning evoked relatively higher cortical activity over prefrontal cortex, supplementary motor area and premotor cortex among young adults. The older adults have decreased gray matter volume which may lead to inability to evoke higher cortical activity while turning.

目 錄
目 錄.................................................. I
表目錄.................................................. III
圖目錄.................................................. IV
附錄.................................................... V
中文摘要................................................ VI
英文摘要................................................ VIII
第一章 緒論............................................. 1
第一節 研究背景與重要性................................ 1
第二節 研究目的......................................... 1
第三節 研究問題與假設.................................. 1
第二章 文獻回顧......................................... 2
第一節 老化造成腦部結構變化與功能表現之關聯............ 2
第二節 腦部結構與步態表現之關聯........................ 3
第三節 行走時的腦部皮質活化型態........................ 3
第四節 轉彎行走......................................... 5
第五節 老年人的步態改變................................ 5
第六節 總結............................................ 6
第三章 研究方法......................................... 7
第一節 研究設計與架構.................................. 7
第二節 受試者.......................................... 7
第三節 研究流程與研究工具.............................. 8
第四節 分析方法......................................... 10
第五節 統計方式......................................... 12
第四章 結果............................................. 13
第一節 受試者基本資料.................................. 13
第二節 腦部磁振造影影像................................ 14
第三節 大腦皮質活化程度之變化.......................... 14
第四節 步態表現......................................... 15
第五章 討論............................................. 16
第一節 受試者.......................................... 16
第二節 老化造成的腦部結構改變.......................... 16
第三節 灰質變化與大腦皮質活化情形之探討................ 17
第四節 步態表現...................................... 19
第五節 研究限制與未來建議.............................. 19
第六章 結論............................................. 20
參考文獻................................................ 21
附錄................................................... 39

表目錄
表一、受試者基本資料................................... 28
表二、行走速度.......................................... 28
表三、步頻............................................. 28
表四、一般速度下轉彎之速度變化量....................... 29
表五、最快速度下轉彎之速度變化量....................... 29
表六、一般速度下轉彎之步頻變化量....................... 29
表七、最快速度下轉彎之步頻變化量....................... 29

圖目錄
圖一、近紅外光光譜儀配置圖............................. 31
圖二、步態與腦部活化型態評估情形....................... 32
圖三、步態與腦部活化型態評估的環境..................... 32
圖四、FA影像分析方法................................... 33
圖五、灰質體積之差異................................... 33
圖六、所有受試者之FA骨架圖............................. 34
圖七、老年人組大腦皮質活化程度原始資料................. 35
圖八、 年輕人大腦皮質活化程度原始資料.................. 37
圖九、 一般速度順時針轉彎之去氧血紅素變化量............ 39
圖十、 一般速度逆時針轉彎之去氧血紅素變化量............ 40
圖十一、 最快速度順時針轉彎之去氧血紅素變化量.......... 41
圖十二、 最快速度逆時針轉彎之去氧血紅素變化量.......... 42

附錄
附錄一、 同意人體研究證明書............................ 44
附錄二、 受試者同意書.................................. 45
附錄三、 自評跌倒關注程度量表.......................... 52
附錄四、 近紅外光光譜儀裝設位置與T1結構影像對位結果:老年人 ......53
附錄五、 近紅外光光譜儀裝設位置與T1結構影像對位結果:年輕人 ......54




1. Grady C: The cognitive neuroscience of ageing. Nat Rev Neurosci 2012, 13(7):491-505.
2. Bennett IJ, Rypma B: Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults. Neurosci Biobehav Rev 2013, 37(7):1201-1210.
3. Steffener J, Stern Y: Exploring the neural basis of cognitive reserve in aging. Biochimica et biophysica acta 2012, 1822(3):467-473.
4. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R: Que PASA? The posterior-anterior shift in aging. Cerebral cortex 2008, 18(5):1201-1209.
5. Cabeza R: Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and aging 2002, 17(1):85-100.
6. Stern Y: Cognitive reserve. Neuropsychologia 2009, 47(10):2015-2028.
7. Reuter-Lorenz PA, Lustig C: Brain aging: reorganizing discoveries about the aging mind. Current opinion in neurobiology 2005, 15(2):245-251.
8. Cappell PAR-LaKA: Neurocognitive Aging and the Compensation Hypothesis. Current Directions in Psychological Science 2008, 17:177-182.
9. Bhadelia RA, Price LL, Tedesco KL, Scott T, Qiu WQ, Patz S, Folstein M, Rosenberg I, Caplan LR, Bergethon P: Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly. Stroke; a journal of cerebral circulation 2009, 40(12):3816-3820.
10. Ryberg C, Rostrup E, Stegmann MB, Barkhof F, Scheltens P, van Straaten EC, Fazekas F, Schmidt R, Ferro JM, Baezner H et al: Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiology of aging 2007, 28(6):955-963.
11. Fling BW, Peltier SJ, Bo J, Welsh RC, Seidler RD: Age differences in interhemispheric interactions: callosal structure, physiological function, and behavior. Frontiers in neuroscience 2011, 5:38.
12. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K: Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage 2001, 14(5):1186-1192.
13. Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 2014, 85 Pt 1:6-27.
14. Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, Obrig H, Schmitz CH: A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. NeuroImage 2014, 85 Pt 1:64-71.
15. Beurskens R, Helmich I, Rein R, Bock O: Age-related changes in prefrontal activity during walking in dual-task situations: a fNIRS study. International journal of psychophysiology : official journal of the International Organization of Psychophysiology 2014, 92(3):122-128.
16. Mirelman A, Maidan I, Bernad-Elazari H, Nieuwhof F, Reelick M, Giladi N, Hausdorff JM: Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults. Journal of neuroengineering and rehabilitation 2014, 11:85.
17. Plichta MM, Herrmann MJ, Baehne CG, Ehlis AC, Richter MM, Pauli P, Fallgatter AJ: Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable? NeuroImage 2006, 31(1):116-124.
18. Suzuki M, Miyai I, Ono T, Kubota K: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. NeuroImage 2008, 39(2):600-607.
19. Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage 2004, 23(3):1020-1026.
20. Harada T, Miyai I, Suzuki M, Kubota K: Gait capacity affects cortical activation patterns related to speed control in the elderly. Experimental brain research 2009, 193(3):445-454.
21. Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J: fNIRS study of walking and walking while talking in young and old individuals. J Gerontol A Biol Sci Med Sci 2011, 66(8):879-887.
22. Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL: Cortical control of normal gait and precision stepping: an fNIRS study. NeuroImage 2014, 85 Pt 1:415-422.
23. Duval K, Luttin K, Lam T: Neuromuscular strategies in the paretic leg during curved walking in individuals post-stroke. Journal of neurophysiology 2011, 106(1):280-290.
24. Glaister BC, Bernatz GC, Klute GK, Orendurff MS: Video task analysis of turning during activities of daily living. Gait &; posture 2007, 25(2):289-294.
25. Sreenivasa MN, Frissen I, Souman JL, Ernst MO: Walking along curved paths of different angles: the relationship between head and trunk turning. Experimental brain research 2008, 191(3):313-320.
26. Chen IH, Yang Y-R, Cheng S-J, Wang R-Y: Differences in Kinematic and Electromyographic Characteristics Between Young and Older Adults During Circular Turning. International Journal of Gerontology 2013, 7(3):162-166.
27. Courtine G, Schieppati M: Human walking along a curved path. II. Gait features and EMG patterns. European Journal of Neuroscience 2003, 18(1):191-205.
28. Paquette MR, Fuller JR, Adkin AL, Vallis LA: Age-related modifications in steering behaviour: effects of base-of-support constraints at the turn point. Experimental brain research 2008, 190(1):1-9.
29. Begg RK, Sparrow WA: Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. J Med Eng Technol 2006, 30(6):382-389.
30. Shkuratova N, Morris ME, Huxham F: Effects of age on balance control during walking. Archives of Physical Medicine and Rehabilitation 2004, 85(4):582-588.
31. Folstein MF, Folstein SE, McHugh PR: "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 1975, 12(3):189-198.
32. Molloy DW, Standish TI: A guide to the standardized Mini-Mental State Examination. International psychogeriatrics / IPA 1997, 9 Suppl 1:87-94; discussion 143-150.
33. Castro-Costa E, Dewey ME, Uchoa E, Firmo JO, Lima-Costa MF, Stewart R: Construct validity of the mini mental state examination across time in a sample with low-education levels: 10-year follow-up of the Bambui Cohort Study of Ageing. International journal of geriatric psychiatry 2014, 29(12):1294-1303.
34. Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C: Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age and ageing 2005, 34(6):614-619.
35. Morgan MT, Friscia LA, Whitney SL, Furman JM, Sparto PJ: Reliability and validity of the Falls Efficacy Scale-International (FES-I) in individuals with dizziness and imbalance. Otology &; neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2013, 34(6):1104-1108.
36. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006, 31(4):1487-1505.
37. Lu CF, Liu YC, Yang YR, Wu YT, Wang RY: Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study. PloS one 2015, 10(6):e0129390.
38. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS: Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiology of aging 2012, 33(3):617 e611-619.
39. Rathi Y, Pasternak O, Savadjiev P, Michailovich O, Bouix S, Kubicki M, Westin CF, Makris N, Shenton ME: Gray matter alterations in early aging: a diffusion magnetic resonance imaging study. Human brain mapping 2014, 35(8):3841-3856.
40. Hugenschmidt CE, Peiffer AM, Kraft RA, Casanova R, Deibler AR, Burdette JH, Maldjian JA, Laurienti PJ: Relating imaging indices of white matter integrity and volume in healthy older adults. Cerebral cortex 2008, 18(2):433-442.
41. Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage 2006, 29(2):368-382.
42. Marstaller L, Williams M, Rich A, Savage G, Burianova H: Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience 2015, 290:369-378.
43. Stelzel C, Brandt SA, Schubert T: Neural mechanisms of concurrent stimulus processing in dual tasks. NeuroImage 2009, 48(1):237-248.
44. Akkal D, Dum RP, Strick PL: Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. The Journal of neuroscience : the official journal of the Society for Neuroscience 2007, 27(40):10659-10673.
45. Wilson TW, Kurz MJ, Arpin DJ: Functional specialization within the supplementary motor area: a fNIRS study of bimanual coordination. NeuroImage 2014, 85 Pt 1:445-450.
46. Purves D AG, Fitzpatrick D, et al.: The Premotor Cortex. Neuroscience 2nd edition Sunderland (MA): Sinauer Associates 2001.
47. Cabeza R, Anderson ND, Locantore JK, McIntosh AR: Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 2002, 17(3):1394-1402.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top