|
1. Tuomela, J., et al., Enzyme inhibition of dopamine metabolism alters 6-[18F]FDOPA uptake in orthotopic pancreatic adenocarcinoma. EJNMMI Res, 2013. 3(1): p. 18. 2. Miyasaka, M. and E.F. Domino, Neural mechanisms of ketamine-induced anesthesia. Int J Neuropharmacol, 1968. 7(6): p. 557-73. 3. Wilder-Smith, O.H., et al., Sensory changes and pain after abdominal hysterectomy: a comparison of anesthetic supplementation with fentanyl versus magnesium or ketamine. Anesth Analg, 1998. 86(1): p. 95-101. 4. Craft, T.M.U., P. M.; Martz, Douglas G., ed. Key Topics in Anesthesia. 1995, Mosby-Year Book 5. Shewan, D. and P. Dalgarno, Ecstasy and neurodegeneration. ...such as ketamine. BMJ, 1996. 313(7054): p. 424. 6. Yentis SM, H.N.S.G., ed. Anaesthesia and Intensive Care A‑Z. 2003, Butterworth-Heinemann. 7. Hancock, P.J. and J.A. Stamford, Stereospecific effects of ketamine on dopamine efflux and uptake in the rat nucleus accumbens. Br J Anaesth, 1999. 82(4): p. 603-8. 8. Corlett, P.R., et al., Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacology, 2011. 36(1): p. 294-315. 9. NIDA Methamphetamine: Abuse and Addiction. 2006. 10. CDC Methamphetamine Use and Risk for HIV/AIDS. 2007. 11. Mathias, R. NIDA Initiative Tackles Methamphetamine Use. 1998. 12. Barr, A.M., et al., The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci, 2006. 31(5): p. 301-13. 13. Murray, R.M., et al., What can we learn about schizophrenia from studying the human model, drug-induced psychosis? Am J Med Genet B Neuropsychiatr Genet, 2013. 162B(7): p. 661-70. 14. Mateo, Y., et al., Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc Natl Acad Sci U S A, 2004. 101(1): p. 372-7. 15. Ishiwata, K., et al., Synthesis and evaluation of an 18F-labeled dopa prodrug as a PET tracer for studying brain dopamine metabolism. Nucl Med Biol, 1996. 23(3): p. 295-301. 16. Matthew D Walker, K.D., et al., In-vivo measurement of LDOPA uptake, dopamine reserveand turnover in the rat brain using [18F]FDOPA PET. Journal of Cerebral Blood Flow &; Metabolism, 2013. 33: p. 59-66. 17. Imperiale, A., et al., Solid pseudopapillary pancreatic tumor mimicking a neuroendocrine neoplasm on (1)(8)F-FDOPA PET/CT. J Clin Endocrinol Metab, 2013. 98(7): p. 2643-4. 18. Hume, S.P., et al., The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods, 1996. 67(2): p. 103-12. 19. Ishiwata, K., et al., Positron emission tomography and ex vivo and in vitro autoradiography studies on dopamine D2-like receptor degeneration in the quinolinic acid-lesioned rat striatum: comparison of [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone. Nucl Med Biol, 2002. 29(3): p. 307-16. 20. Araujo, D.M., et al., Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington's disease. Exp Neurol, 2000. 166(2): p. 287-97. 21. Tsukada, H., et al., Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors in the rat brain: an in vivo study using positron emission tomography. J Neurosci, 1996. 16(23): p. 7670-7. 22. Thanos, P.K., et al., In vivo comparative imaging of dopamine D2 knockout and wild-type mice with (11)C-raclopride and microPET. J Nucl Med, 2002. 43(11): p. 1570-7. 23. Martiniova, L., et al., Usefulness of [18F]-DA and [18F]-DOPA for PET imaging in a mouse model of pheochromocytoma. Nucl Med Biol, 2012. 39(2): p. 215-26. 24. Snow, B.J., et al., Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol, 1993. 34(3): p. 324-30. 25. Martin, W.R., et al., Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol, 1989. 26(4): p. 535-42. 26. Kyono, K., et al., Use of [18F]FDOPA-PET for in vivo evaluation of dopaminergic dysfunction in unilaterally 6-OHDA-lesioned rats. EJNMMI Res, 2011. 1(1): p. 25. 27. Usun, Y., et al., Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex. Behav Brain Res, 2013. 256: p. 229-37. 28. Vollenweider, F.X., et al., Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res, 2000. 34(1): p. 35-43. 29. Wood, D., et al., Recreational ketamine: from pleasure to pain. BJU Int, 2011. 107(12): p. 1881-4. 30. Shahani, R., et al., Ketamine-associated ulcerative cystitis: a new clinical entity. Urology, 2007. 69(5): p. 810-2. 31. Nicholas M. Selby, J.A., Peter Bungay, Lindsay J. Chesterton and Nitin V. Kolhe, Obstructive nephropathy and kidney injury associatedwith ketamine abuse. NDT Plus, 2008. 5: p.: 310–312. 32. Ferro M.M. , et al., Neuroprotective effect of ketamine/xylazine on two rat models of Parkinson’s disease. Brazilian Journal of Medical and Biological Research, 2007. 40: p. 89-96. 33. Autry, A.E., et al., NMDA receptor blockade at rest triggers rapidbehavioural antidepressant responses. Nature, 2011: p. doi:10.1038/nature10130. 34. Walker, M.D., et al., In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J Cereb Blood Flow Metab, 2013. 33(1): p. 59-66. 35. Reus G.Z., Abelaira H.M., dos Santos M.A. et al., Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behavioural Brain Research, 2013. 256:p.451-456.
|