跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:商若飛
研究生(外文):Zsofia Samodai
論文名稱:短期冥想訓練對腦波頻率,非配對誘發電位及自律神經活動的影響
論文名稱(外文):The effect of short-term meditation on brain oscillation, mismatch negativity and autonomic activity
指導教授:林永煬林永煬引用關係
指導教授(外文):Yung-Yang Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:39
中文關鍵詞:非配對誘發磁場腦磁圖心率變異分析4天短期冥想腦波頻譜分析
外文關鍵詞:magnetic mismatch negativitymagnetoencephalographyheart rate variabilityshort-term meditationfrequency analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:1
背景: 長久以來,冥想是一種很傳統的鍛鍊方法,用以訓練身心達到特定的意識狀態。它被認為能夠有效的改善注意力、情緒調節和整體健康。研究顯示長期冥想者在冥想狀態下,心率變異變數及特定腦波頻率強度會發生變化;但其神經生理機制尚不清楚。本研究擬藉由測量自律神經活動,非配對誘發磁場(magnetic counterpart of mismatch negativity, 簡稱MMNm)及腦波頻譜分析來探討經過短期冥想的受試者其神經生理引起的變化。資料與方法: 20位無患有精神、神經或心臟疾病的健康受試者,在接受4天短期內觀式的冥想訓練前後紀錄靜息態以及冥想狀態下的自發性腦磁波圖(Magnetoencephalography)及同步的心電圖(Electrocardiography)。此外,在冥想訓練前後紀錄聽覺非配對誘發磁場,以及讓受試者填寫冥想程度問卷。自評冥想程度評分由最淺1分至最深度10分。本實驗主要的分析参數為心律變異量(Heart rate variability)、非配對誘發磁場、自發性腦皮質共振頻率、以及自評冥想深度。
結果: Wilcoxon 符號排序檢定結果顯示自評冥想深度高於6分的受試者,其gamma1(30-59 Hz)和gamma2(60-90 Hz)頻帶在冥想狀態下相較靜止狀態活化程度有顯著增加。使用Spearman 排序相關係數分析發現受試者的自評冥想深度和gamma1 以及gamma2 頻帶由靜止狀態到冥想狀態的活化改變程度有顯著的相關。Wilcoxon 符號排序檢定結果顯示自評的冥想深度高於5分的受試者其MMNm的peak latency於冥想狀態下相較靜止狀態有顯著的縮短。
結論: 我們的研究發現,透過4天的冥想訓練就能觀察到受試者冥想狀態時顯著神經生理方面的變化。內觀的冥想方式在完全無冥想經驗的訓練者身上,首次觀察到的變化是腦部右側gamma power的增加;該變化可能能被視為成功進入冥想狀態的生理指標。冥想狀態使得MMNm peak latency出現的時間減短,然而peak amplitude of MMNm和心率變異相關的變數都不會改變。

Background: Meditation is a practice to induce a state of consciousness that is suggested to improve attention, emotional regulation and overall well-being. Studies on long-term meditation practitioners have shown a change in heart rate variability and brain oscillation frequency pattern during meditative state. However, the underlying neurophysiological mechanism remains unknown. The present research aims to study whether short-term meditation affects autonomic activity, brain oscillation, and the magnetic counterpart of mismatch negativity (MMNm) in novice practitioners.
Materials and methods: Twenty healthy subjects without neurological, psychiatric or cardiac disease were recruited. Magnetoencephalographic and simultaneous electrocardiographic recordings were obtained in resting state before and in meditative state after the subjects received a 4-day short-term meditation training. An auditory Oddball paradigm MEG recording was also carried out in both conditions. All of our subjects were required to complete a meditation efficiency questionnaire. In the questionnaire, subjects were asked to evaluate their own success of entering meditative state on a 1 to 10 scale ranging from inability to meditate (score = 1) to complete meditation success (score = 10). Changes in variables of heart rate variability, magnetic counterpart of mismatch negativity and cortical oscillation were evaluated.
Results: Wilcoxon Signed Rank Test performed on the data obtained from the subjects with self-evaluation meditation score above or equal to 6 resulted in significant oscillatory power increase in the gamma1 (30-59 Hz) and gamma2 (60-90 Hz) frequency bands. Spearman`s Rank Correlation Coefficient calculated for all subjects yielded a significant correlation between self-assessment meditation score and both gamma1 and gamma2 oscillatory power change from resting to meditation. Wilcoxon Test carried out on subjects’ data with meditation depth of score 5 or above, showed a significant reduction of MMNm peak latency in auditory Oddball paradigm during meditation compared to the resting condition.
Conclusions: Significant physiological changes are observable after only 4 days of meditation practice in novice subjects. The first physiological measure of mindfulness meditation appears to be the increase of gamma power activity on the right hemisphere that might be the signature of successful meditation. Moreover, the short term medication affects the peak latendy of MMNm but not the peak amplitude of MMNm nor heart rate variability.

Chinese Abstract ........................................ i
English Abstract ...................................... iii
Table of Contents ....................................... v
Introduction ............................................ 1
Materials and Methods ................................... 4
Results ................................................ 12
Discussion and Conclusions ............................. 17
References ............................................. 27
List of Figures ........................................ 31
List of Tables ......................................... 39
Amenedo, E., and Escera, C. (2000). The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. European Journal of Neuroscience 12, 2570-2574.
Berkovich-Ohana, A., Glicksohn, J., and Goldstein, A. (2012). Mindfulness-induced changes in gamma band activity - implications for the default mode network, self-reference and attention. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 123, 700-710.
Brefczynski-Lewis, J.A., Lutz, A., Schaefer, H.S., Levinson, D.B., and Davidson, R.J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States of America 104, 11483-11488.
Cahn, B.R., Delorme, A., and Polich, J. (2010). Occipital gamma activation during Vipassana meditation. Cognitive Processing 11, 39-56.
Chiesa, A., Calati, R., and Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical psychology review 31, 449-464.
Corbetta, M., Patel, G., and Shulman, G.L. (2008). The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron 58, 306-324.
Corbetta, M., and Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews Neuroscience 3, 201-215.
Delgado-Pastor, L.C., Perakakis, P., Subramanya, P., Telles, S., and Vila, J. (2013). Mindfulness (Vipassana) meditation: effects on P3b event-related potential and heart rate variability. International journal of psychophysiology : official journal of the International Organization of Psychophysiology 90, 207-214.
Dor-Ziderman, Y., Berkovich-Ohana, A., Glicksohn, J., and Goldstein, A. (2013). Mindfulness-induced selflessness: a MEG neurophenomenological study. Front Hum Neurosci 7, 582.
Engel, A.K., Fries, P., and Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature reviews Neuroscience 2, 704-716.
Facco, E., Ermani, M., Rampazzo, P., Tikhonoff, V., Saladini, M., Zanette, G., Casiglia, E., and Spiegel, D. (2014). Top-down regulation of left temporal cortex by hypnotic amusia for rhythm: a pilot study on mismatch negativity. The International journal of clinical and experimental hypnosis 62, 129-144.
32
Fell, J., Fernández, G., Klaver, P., Elger, C.E., and Fries, P. (2003). Is synchronized neuronal gamma activity relevant for selective attention? Brain Research Reviews 42, 265-272.
Hamalainen M, H.R., Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65, 413–497.
Hart, W. (1987). The Art of Living: Vipassana Meditation: As Taught by S. N. Goenka (HarperOne).
Hasenkamp, W., Wilson-Mendenhall, C.D., Duncan, E., and Barsalou, L.W. (2012). Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. NeuroImage 59, 750-760.
Herrmann, C.S., Frund, I., and Lenz, D. (2010). Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neuroscience and biobehavioral reviews 34, 981-992.
Holzel, B.K., Ott, U., Hempel, H., Hackl, A., Wolf, K., Stark, R., and Vaitl, D. (2007). Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neuroscience letters 421, 16-21.
Jamieson, G.A., Dwivedi, P., and Gruzelier, J.H. (2005). Changes in mismatch negativity across pre-hypnosis, hypnosis and post-hypnosis conditions distinguish high from low hypnotic susceptibility groups. Brain research bulletin 67, 298-303.
Javitt, D.C., Steinschneider, M., Schroeder, C.E., and Arezzo, J.C. (1996). Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 93, 11962-11967.
Kompus, K., Westerhausen, R., Craven, A.R., Kreegipuu, K., Poldver, N., Passow, S., Specht, K., Hugdahl, K., and Naatanen, R. (2015). Resting-state glutamatergic neurotransmission is related to the peak latency of the auditory mismatch negativity (MMN) for duration deviants: An H-MRS-EEG study. Psychophysiology.
la Cour, P., and Petersen, M. (2015). Effects of mindfulness meditation on chronic pain: a randomized controlled trial. Pain medicine (Malden, Mass) 16, 641-652.
Lehmann, D., Faber, P.L., Achermann, P., Jeanmonod, D., Gianotti, L.R., and Pizzagalli, D. (2001). Brain sources of EEG gamma frequency during volitionally meditation-induced, altered states of consciousness, and experience of the self. Psychiatry research 108, 111-121.
33
Lin, Y.Y., Hsiao, F.J., Shih, Y.H., Yiu, C.H., Yen, D.J., Kwan, S.Y., Wong, T.T., Wu, Z.A., and Ho, L.T. (2007). Plastic phase-locking and magnetic mismatch response to auditory deviants in temporal lobe epilepsy. Cerebral cortex (New York, NY : 1991) 17, 2516-2525.
Lippelt, D.P., Hommel, B., and Colzato, L.S. (2014). Focused attention, open monitoring and loving kindness meditation: effects on attention, conflict monitoring, and creativity – A review. Frontiers in psychology 5.
Lumma, A.-L., Kok, B.E., and Singer, T. (2015). Is meditation always relaxing? Investigating heart rate, heart rate variability, experienced effort and likeability during training of three types of meditation. International Journal of Psychophysiology 97, 38-45.
Lutz, A., Greischar, L.L., Rawlings, N.B., Ricard, M., and Davidson, R.J. (2004). Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proceedings of the National Academy of Sciences of the United States of America 101, 16369-16373.
Malinowski, P. (2013). Neural mechanisms of attentional control in mindfulness meditation. Frontiers in Neuroscience 7.
Mitchell, J.T., Zylowska, L., and Kollins, S.H. (2015). Mindfulness Meditation Training for Attention-Deficit/Hyperactivity Disorder in Adulthood: Current Empirical Support, Treatment Overview, and Future Directions. Cognitive and behavioral practice 22, 172-191.
Näätänen, R., Paavilainen, P., Rinne, T., and Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology 118, 2544-2590.
Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. International journal of psychophysiology : official journal of the International Organization of Psychophysiology 88, 109-123.
Paavilainen, P., Alho, K., Reinikainen, K., Sams, M., and Naatanen, R. (1991). Right hemisphere dominance of different mismatch negativities. Electroencephalography and clinical neurophysiology 78, 466-479.
Sakakibara, M., Takeuchi, S., and Hayano, J. (1994). Effect of relaxation training on cardiac parasympathetic tone. Psychophysiology 31, 223-228.
Takahashi, T., Murata, T., Hamada, T., Omori, M., Kosaka, H., Kikuchi, M., Yoshida, H., and Wada, Y. (2005). Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. International journal of psychophysiology : official journal of the International Organization of Psychophysiology 55, 199-207.
Tang, Y.Y., Holzel, B.K., and Posner, M.I. (2015a). The neuroscience of mindfulness meditation. Nature reviews Neuroscience 16, 213-225.
Tang, Y.Y., Lu, Q., Feng, H., Tang, R., and Posner, M.I. (2015b). Short-term
34
meditation increases blood flow in anterior cingulate cortex and insula. Frontiers in psychology 6, 212.
Tang, Y.Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., Yu, Q., Sui, D., Rothbart, M.K., Fan, M., et al. (2007). Short-term meditation training improves attention and self-regulation. Proceedings of the National Academy of Sciences of the United States of America 104, 17152-17156.
Tang, Y.Y., Rothbart, M.K., and Posner, M.I. (2012). Neural correlates of establishing, maintaining, and switching brain states. Trends in cognitive sciences 16, 330-337.
Tarvainen, M.P.N., J. (2012). Kubios HRV user's guide. Verison 2.1. (Kuopio, Finland: University of Eastern Finland).
Thayer, J.F., and Lane, R.D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders 61, 201-216.
Tiitinen, H., May, P., Reinikainen, K., and Naatanen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372, 90-92.
Wu, S.D., and Lo, P.C. (2008). Inward-attention meditation increases parasympathetic activity: a study based on heart rate variability. Biomedical research (Tokyo, Japan) 29, 245-250.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top