跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林承緯
研究生(外文):Cheng-Wei Lin
論文名稱:應用於電動車充電系統之LLC串聯共振式轉換器
論文名稱(外文):An LLC Series-Resonant Converter for Electric-Vehicle Battery Chargers
指導教授:華志強華志強引用關係
指導教授(外文):Chih-Chiang Hua
口試委員:陳建富莫清賢張永農
口試委員(外文):Jiann-Fu ChenChin-Sien MooYong-Nong Chang
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:LLC串聯共振式轉換器電池充電器電動車
外文關鍵詞:LLC series-resonant converterBattery chargerElectric vehicles
相關次數:
  • 被引用被引用:4
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:1
This thesis presents an LLC series-resonant converter with two transformers in parallel for the electric vehicle battery charger. This topology achieves the zero-voltage switching (ZVS) for main switches in the entire charging profile. In addition, the zero-current switching (ZCS) for output rectifier diodes is extended under charging condition. The proposed charger provides a wide range output voltage for the battery system. Moreover, in order to maintain the high efficiency under charging, the charger adopts a bidirectional switch. At low output power condition, the charger uses one transformer to transfer the energy. Finally, the design procedure is provided and implemented in a prototype charger with the input dc link 400V and the output voltage of 36-58V. Experimental results are presented to demonstrate the system performance. The maximum power is up to 700W and the peak efficiency is as high as 93.6%.
本文致力於提出新型的LLC串聯共振式轉換器,主要應用於電動車的電池充電器,此架構由兩個變壓器並聯而成。此電路可達成LLC串聯共振式轉換器柔性切換的優點,主開關可達成零電壓切換,與整流二極體可達成零電流切換。並且,所提出的充電器可應用於寬電壓範圍的電池充電器系統,而為了使充電過程中皆可達到高效率,並且新增一雙向式開關於電路中。當充電器操作於低功率輸出時,可切換至單一變壓器傳遞能量,降低系統損失。
最後,本文提供設計流程範例與實驗原型電路的實驗結果,驗證轉換器之效果,其輸入直流電壓400V和輸出電壓36-58V,最高功率為700W,以及最高效率高達93.6%。

目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 內容大綱 3
第二章 磷酸鋰鐵電池介紹 4
2.1 常見電池之簡介 4
2.2 磷酸鋰鐵電池 5
2.3 電池充電技術 9
第三章 共振式轉換器簡介 13
3.1 半橋電路 13
3.2 串聯共振式轉換器 15
3.3 並聯共振式轉換器 17
3.3 LLC串聯共振式轉換器 19
第四章 電路架構設計與研製 26
4.1 電路特色分析 26
4.2 電路暫態分析 29
4.2 共振槽參數設計 30
4.3 開關元件選擇 33
4.4 控制IC 34
第五章 實驗結果 35
5.1 電路規格 35
5.2 實驗波形量測 36
第六章 結論與未來研究方向 41
6.1 結論 41
6.2 未來研究方向 42
參考文獻 43


[1]陳鵬紋,“基於數位控制電池充電器之研製,”國立雲林科技大學碩士論文,2015年。
[2]李沛鴻,“磷酸鋰鐵串聯電池組之電量平衡電路”國立雲林科技大學碩士論文,2015年。
[3]Dianbo Fu, Bing Lu, and Fred C. Lee, “1 MHz high efficiency LLC resonant converters with synchronous rectifier,” IEEE Power Electronics Specialists Conf., 2007 (PESC), pp. 2404 - 2410, 2007.
[4]Alireza Khaligh, and Serkan Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for PHEV,” EEE Transactions on Vehicular Technology, Vol. 61, No. 8, pp. 3475 - 3489, Oct. 2012.
[5]方毅雄,“應用多繞組變壓器於電池電量平衡電路之研究”,國立雲林科技大學碩士論文,2013年。
[6]許文欽,“燃料電池與旭電池之混合式電源系統”國立雲林科技大學碩士論文,2013年。
[7]磷酸鋰鐵電池 Datasheet, 昇陽國際半導體股份有限公司。
[8]李伯儀,“磷酸鋰鐵電池均勻充電電路之研製” ,國立雲林科技大學碩士論文,2011年。
[9]江錫津,“燃料電池建模及其生呀轉換器設計” ,國立雲林科技大學博士論文,2015年。
[10]薛宗偉,“磷酸鋰鐵電池之電量估測延就” ,國立雲林科技大學博士論文,2010年。
[11]Dianbo Fu, Bing Lu, and Fred C. Lee, “1 MHz high efficiency LLC resonant converters with synchronous rectifier,” IEEE Power Electronics Specialists Conf., 2007 (PESC), pp. 2404 - 2410, 2007.
[12]Alireza Khaligh, and Serkan Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for PHEV,” EEE Transactions on Vehicular Technology, Vol. 61, No. 8, pp. 3475 - 3489, Oct. 2012.
[13]Gang Ma, Wenlong Qu, Gang Yu, Yuanyuan Liu, Ningchuan Liang, and Wenzhong Li, “A zero-voltage switching bidirectional DC–DC converter with state analysis and soft switching-oriented design consideration,” IEEE Transactions on Industrial Electronics, Vol. 56. No. 6, pp. 2174 - 1284, June. 2009.
[14]R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Transactions on Power Electronics, Vol. 3, No. 2, pp. 174 - 182, Apr. 1988.
[15]Haibing Hu, Xiang Fang, Frank Chen, Z. John Shen, and Issa Batarseh, “A Modified High-Efficiency LLC Converter with Two Transformers for Wide Input-Voltage Range Applications,” IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 1946 - 1960, Apr. 2013.
[16]Byoung-Hee Lee, Moon-Young Kim, Chong-Eun Kim, Ki-Bum Park, and Gun-Woo Moon, “Analysis of LLC Resonant Converter considering effects of parasitic components,” Int. Telecommunications Energy Conf. (INTELEC), pp. 1 - 6, 2009.
[17]Fariborz Musavi, Marian Craciun, Deepak Gautam, Murray Edington, Wilson Eberle, and William G. Dunford, “Control Strategies for Wide Output Voltage Range LLC Resonant DC–DC Converters in Battery Chargers,” IEEE Transactions on Vehicular Technology, pp. 1117 - 1125, Mar. 2014.
[18]Junjun Deng, Chunting Chris Mi, Ruiqing Ma, and Siqi Li, “Design of LLC Resonant Converters Based on Operation-Mode Analysis for Level Two PHEV Battery Chargers,” IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 4, pp. 1595 - 1606, Aug. 2015.
[19]Bo Yang, F. C. Lee, A. J. Zhang, and Guisong Huang, “LLC Resonant Converter for Front End DC/DC Conversion,” IEEE Applied Power Electronics Conf. and Expo. (APEC), pp. 1108 - 1112, 2002.
[20]Fariborz Musavi, and Wilson Eberle, “Overview of wireless power transfer technologies for electric vehicle battery charging,” IET Power Electron, Vol. 7, No. 1, pp. 1755 - 4535, Jan. 2014.
[21]Fariborz Musavi, Marian Craciun, Deepak Gautam, Murray Edington, Wilson Eberle, and William G. Dunford, “An LLC resonant DC-DC converter for wide output voltage range battery charging applications,” IEEE Transactions on Vehicular Technology, Vol. 63, No. 3, pp. 1117 - 1125, Mar. 2014.
[22]Haiyan Pan, Chao He, Farooq Ajmal, Henglin Chen, and Guozhu Chen, “Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load application,” IET Power Electronics, Vol. 7, No. 11, pp. 2887 - 2894, Nov. 2014.
[23]Weiyi Feng, Fred C. Lee, and Paolo Mattavelli, “Optimal Trajectory Control of Burst Mode for LLC Resonant Converter,” IET Power Electronics, Vol. 28, No. 1, pp. 457 - 466, Jan. 2013.
[24]Zhiyuan Hu, Yajie Qiu, Laili Wang, and Yan-Fei Liu, “An Interleaved LLC Resonant Converter Operating at Constant Switching Frequency,” IEEE Transactions on Power Electronics, Vol. 29, No. 6, pp. 2931 - 2943, Jun. 2014.
[25]Wenjin Sun, Hongfei Wu, Haibing Hu, and Yan Xing, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IEEE Conf. and Expo. Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1 - 6, 2014
[26]Junjun Deng, Siqi Li, Sideng Hu, Chunting Chris Mi, and Ruiqing Ma, “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers,” IEEE Transactions on Vehicular Technology, Vol. 63, No. 4, pp. 1581 – 1592, M. 2014.
[27]Sideng Hu, Junjun Deng, Chris Mi, and Mengyang Zhang, “Optimal design of line level control resonant converters in plug-in hybrid electric vehicle battery chargers,” IET Electrical Systems in Transportation, Vol. 4, No. 1, pp. 21 – 28, Mar. 2014.
[28]Reza Beiranvand, Bizhan Rashidian, Mohammad Reza Zolghadri, and Seyed Mohammad Hossein Alavi, “A Design Procedure for Optimizing the LLC Resonant Converter as a Wide Output Range Voltage Source,” IEEE Transactions on Power Electronics, Vol. 27, No. 8, pp. 3749 – 3763, Aug. 2012.
[29]Haoyu Wang, “A Pulse Width Modulated LLC Type Resonant Topology Adpated to Wide Output Voltage Range,” Applied Power Electronics Conf. and Expo. (APEC), pp. 1280 – 1285, 2016.
[30]Kazimierczuk M.K., and Czarkowski, D. “Resonant Power Converters,” Wiley, New York, 1995.
[31]Bo, Y.: ‘Topology investigation of front end DC/DC converter for distributed power system’. PhD thesis, Virginia Polytechnic Institute and State University, 2003.
[32]J. F. Lazar, and R. Martinelli, “A Steady-State Analysis of the LLC Series Resonant Converter,” Applied Power Electronics Conf. and Expo. (APEC), pp. 728 – 735, 2001.
[33]Yilei Gu, Zhengyu Lu, Lijun Hang, Zhaoming Qian, and Guisong Huang, “Three-Level LLC Series Resonant DCDC Converter,” IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp. 781 – 789, July. 2005.
[34]Haoyu Wang, Serkan Dusmez, and Alireza Khaligh, “Design and analysis of a full-bridge LLC-Based PEV charger optimized for wide battery voltage range,” IEEE Transactions on Vehicular Technology, Vol. 63, No. 4, pp. 1603 – 1613, Mau. 2014.
[35]Weiyi Feng, Fred C. Lee, and Paolo Mattavelli, “Simplified optimal trajectory control (SOTC) for LLC resonant converters,” IEEE Transactions on Power Electronics, pp. 2415 - 2426, May. 2013.
[36]S. De Simone, C. Adragna, C. Spini, and G. Gattavari, “Design-oriented steady-state analysis of LLC resonant converters based on FHA,” IEEE Int. Symposium on Power Electronics, pp. 200 - 207, 2006.
[37]T. Duerbaum, “First harmonic approximation including design constraints,” Int. Telecommunications Energy Conf. (INTELEC), pp. 321 - 328, 1998.
[38]In-Ho Cho, Young-Do Kim, and Gun-Woo Moon, “A half-bridge LLC resonant converter adopting boost PWM control scheme for hold-up state operation,” IEEE Transactions on Power Electronics, pp. 841 - 850, Feb. 2014.
[39]Haoyu Wang, Serkan Dusmez, and Alireza Khaligh, “Maximum efficiency point tracking technique for LLC-Based PEV chargers through variable DC link control,” IEEE Transactions on Industrial Electronics, pp. 6041 - 6049, Nov. 2014.
[40]L. Hang, B. Li, S. Liu, Y. Gu, W. Yao, and Z. Lu, “Asymmetrical secondary structure of LLC series resonant DC/DC converter for multi-output applications,” IEEE Transactions on Power Electronics, pp. 993 - 1001, Nov. 2011.
[41]Saichol Chudjuarjeen, Anawach Sangswang, and Chayant Koompai, “An improved LLC resonant inverter for induction-heating applications with asymmetrical control,” IEEE Transactions on Industrial Electronics, pp. 2915 - 2925, July. 2011.
[42]UCC25600 Datasheet, Texas Instruments, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top