跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃凱裕
研究生(外文):Huang, Kai-Yu
論文名稱:利用成對光電化學技術去除聚乙烯醇成效之研究
論文名稱(外文):The study of the performance by combined photoelectrochemical technology to remove polyvinyl alcohol
指導教授:徐啟銘徐啟銘引用關係周偉龍周偉龍引用關係
指導教授(外文):Shu, Chi-MinChou, Wei-Lung
口試委員:王志達游美利謝東風
口試委員(外文):Wang. Chih-TaYou, Mei-LiHsieh, Tung-Feng
口試日期:2015-01-20
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:121
中文關鍵詞:媒介物電化學氧化程序光電化學氧化程序成對光電化學氧化系統鈰(IV)
外文關鍵詞:mediated electrochemical oxidation (MEO)photo electrochemicaloxidation (PEO)paired photo electrochemical oxidation processCerium(IV)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
各式的高分子聚合物已經被廣泛用於工業界,包括聚乙烯醇(PVA)、聚氯乙烯(PVC)及聚丙烯(PP)之產品,其中,聚乙烯醇(PVA)之應用最為廣泛,如紡織業之上漿劑、紙張塗層劑以及液晶顯示器之偏光膜等。然而面臨所產生之大量廢水,卻無法單以生物處理法來降解這些污染物,因此,高級氧化程序成為廢水處理之最好方法,依據不同的反應機制來做分類,媒介物電化學氧化程序(MEO)及光電氧化程序(PEO)之卻是很少應用於處理含PVA之廢水。本研究主要目標是將MEO及PEO兩種方法結合形成一個成對光電化學氧化系統來處理水溶液中之PVA,探討在不同參數下對污染物之處理成效,依據實驗結果歸納整合最適化之操作條件,並評估此系統用來處理含PVA廢水之可行性。
研究主要分為四個部分,第一部分為以硫酸鈰直接氧化PVA之動力學機制探討;第二部分為MEO產生鈰(IV)來去除溶液中之PVA,並利用不同溫度來求得在反應過程中之反應動力學及活化能;第三部分為藉由PEO程序所產生之OH˙來去除PVA,且探討不同UV光強度對去除PVA之影響;第四部份為將MEO與PEO程序合併形成一成對光電化學氧化系統,改變不同操作參數來同時去除溶液中之PVA,實驗結果顯示,最適化之操作參數分別為電流密度3 mA cm-2、鈰(III)濃度0.01 M、硝酸濃度 0.3 M、氧氣流速500 cm3 min-1及UV光強度1.2 mW cm-2,並探討PVA被礦化之影響,最後將比較分離槽與非分離槽之成對光電化學反應系統之優劣。

Various types of synthetic polymers have been used in industries, including polyvinyl alcohol (PVA), polyvinyl chloride (PVC), and polypropylene (PP) for manufacturing products. PVA is a water-soluble polymer, commonly used as a sizing agent in the textile, paper-coating, and polarizing film light in liquid crystal displays (LCDs). However, a large number of discharge wastewaters that are difficult to degrade using biological treatment. Therefore, advanced oxidation process is the best method for wastewater treatment. According to different classification of reaction mecanisms, mediated electrochemical oxidation (MEO) and photo electrochemical oxidation (PEO) have rarely used in treating PVA wastewater. This study investigated the removal of PVA from wastewater by paired photo electrochemical oxidation system, in which employing metal redox mediators with high redox potential for MEO process and UV assisted photo electrochemical oxidation. The tasks also included the comparisons of efficiencies in different processes and determine the optimum conditions. Based on the results, the feasibility of this study by paired photo electrochemical oxidation process in situ was evaluated.
The research was divided into four parts: First, the kinetic mechanism for direct oxidation of PVA by cerium sulfate is dicussed; in second part, the electrogeneration of Ce (IV) can effectively remove PVA from the Ce (III) by the anodic MEO process. In addition, the kinetic constants for the removal of PVA are determined and the activation energy is also calculated for the MEO process; the third part, the hydroxyl free radicals are produced by PEO process, and investigated for various UV ligt intensities to evaluate the influence on te removal efficiency of PVA; Finally, the synergistic effect of combination process of MEO and PEO would be a paired photo electrochemical oxidation system for the removal efficiency of PVA. The optimum current density, Ce (III) concentration, nitric acid concentration, oxygen flow rate, and UV irradiation intensity are found to be 3 mA cm-2, 0.01 M, 500 cm3 min-1, and 1.2 mW cm-2, respectively. Eventually, the performance of comparisons with divided and undivided cell would be also investigated in this thesis.

中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究背景 1
1.2 含聚乙烯醇之廢水 2
1.3 研究動機與目的 2
第二章、文獻回顧 4
2.1 聚乙烯醇 4
2.1.1簡介 4
2.1.2聚乙烯醇廢水處理之文獻回顧 5
2.2 高級氧化技術之介紹與應用 9
2.3 芬頓(Fenton)程序 11
2.3.1 傳統芬頓程序 11
2.3.2 電芬頓(Electro-Fenton)程序 13
2.3.3 光芬頓(photo-Fenton)程序 14
2.4 電解氧化法 17
2.4.1 直接電解氧化(direct electrolysis oxidation,DEO) 18
2.4.2 間接電解氧化(Indirect Electrolysis Oxidation,IEO) 20
2.4.3 金屬媒子之電解氧化程序 21
2.4.4 影響媒介物電解氧化程序處理效率之操作參數 26
2.5 光催化反應程序 28
2.5.1 紫外光特性 28
2.5.2 光化學反應理論 29
2.5.3 過氧化氫(Hydrogen peroxide, H2O2) 31
2.5.4 UV/H2O2氧化程序 31
2.5.5 影響UV/H2O2氧化程序之參數 33
2.5.6 O2於陰極電解還原形成H2O2之理論 34
第三章、研究方法及設備材料 36
3.1研究流程 36
3.2 實驗藥品與設備 38
3.2.1實驗藥品 38
3.2.2實驗設備 38
3.3 實驗方法及步驟 39
3.3.1 PVA廢水之基本性質測試 39
3.3.2電極與活化陽離子膜之前處理 40
3.3.3非分離槽反應裝置與操作 40
3.3.4分離槽反應裝置與操作 42
3.3.5 直接氧化、MEO與PEO程序之反應機制探討 43
3.4 實驗儀器分析原理與量測 43
3.4.1 紫外光分光光度計 (UV/Vis spectrophotometer) 43
3.4.2 Ce(IV)濃度測定 46
3.4.3 H2O2濃度測定 46
3.4.4 COD量測原理 46
3.4.5 TOC量測原理 47
第四章、結果與討論 48
4.1 以硫酸鈰(IV)直接氧化聚乙烯醇 48
4.1.1反應機構及動力理論分析 48
4.1.2聚乙烯醇濃度之影響 50
4.1.3硫酸鈰(IV)濃度之影響 53
4.1.4硝酸濃度之影響 54
4.1.5溫度之影響 56
4.2陽極—媒介物電化學氧化程序(MEO) 58
4.2.1 電流及電解時間對鈰(III)氧化之影響 58
4.2.2 電流之影響 59
4.2.3 硝酸濃度之影響 61
4.2.4 溶液溫度之影響 63
4.2.5以媒介物電化學氧化技術(MEO)去除PVA之動力機制探討 64
4.3 陰極—光電化學氧化程序(PEO) 66
4.3.1 不同陰極材料對過氧化氫產生量之影響 66
4.3.2 各種參數對過氧化氫產生量之影響 67
4.3.2.1 電流密度之影響 67
4.3.2.2 氧氣流速之影響 68
4.3.2.3 溶液pH之影響 69
4.3.2.4 電解質之影響 70
4.3.3 光化學氧化法去除PVA 71
4.3.3.1 UV光照射對過氧化氫之影響 71
4.3.3.2 UV光強度之影響 72
4.3.3.3 光電化學氧化系統去除PVA之動力機制分析 73
4.4 成對電化學反應系統處理聚乙烯醇 75
4.4.1電流密度效應之探討 75
4.4.1.1 電流密度對PVA去除效率之影響 75
4.4.1.2 電能消耗與電流效率之評估 78
4.4.2不同鈰(III)濃度之探討 80
4.4.2.1 鈰(III)濃度對PVA去除效率之影響 80
4.4.2.2 電能消耗與電流效率之評估 82
4.4.3不同硝酸濃度之探討 84
4.4.3.1 硝酸濃度對PVA去除效率之影響 84
4.4.3.2 電能消耗與電流效率之評估 86
4.4.4不同氧氣流速之探討 87
4.4.4.1 氧氣流速對PVA去除效率之影響 87
4.4.4.2 電能消耗與電流效率之評估 89
4.4.5不同UV光強度之探討 91
4.4.5.1 UV光強度對PVA去除效率之影響 91
4.4.5.2 電能消耗與電流效率之評估 93
4.4.6 PVA之礦化效果 95
4.4.7成對電化學反應系統之反應槽比較 96
第五章、結論與建議 98
5.1 硫酸鈰直接氧化聚乙烯醇 98
5.2 以MEO程序去除聚乙烯醇 98
5.3 以PEO程序去除聚乙烯醇 98
5.4 以成對光電化學系統去除聚乙烯醇 99
參考文獻 100

[1]Park, S.J., Yoon, T.I., Bae, J.H., Seo, H.J., Park, H.J., 2001, “Biological treatment of wastewater containing dimethyl suplhoxide from the semi-conductor industry”, Process Biochem., vol. 36, pp. 579–589.
[2]中華民國行政院環保署環保法規網站網頁。2013。網址為:http://ivy5.epa.gov.tw/epalaw/index.aspx
[3]Kusic, H., Peternel, I., Ukic, S., Koprivanac, N., Bolanca, T., Papic, S., Bozic, A.L., 2011, “Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix”, Chem. Eng. J., vol. 172, pp. 109–121.
[4]Xu, X., Li, X., 2010, “Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion”, Sep. Purif. Technol., vol. 72, pp. 105–111.
[5]戈進杰,2002,“生物降解高分子材料及其應用”,化學工業出版社。
[6]李昉懌,2008,“含聚乙烯醇廢液之處理”,國立台灣大學高分子科學與工程學研究所,碩士論文。
[7]Tokiwa, Y., Kawabata, G., Jarerat, A., 2001, “A modified method for isolating poly (vinyl alcohol)-degrading bacteria and study of their degradation patterns”, Biotechnol. Lett., vol. 23,pp. 1937–1941.
[8]Kobayashi, M., Toguchida, J., Masanori, O., 2001, “Development of the shields for tendon injury repair using polyvinyl alcohol-hyreogel (PVA-H)”, J. Biomed. Mater. Res., vol. 58, pp. 344–351.
[9]Schmedlen, R.H., Masters, K.S., West, J.L., 2002, “Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering”, Biomaterials, vol. 23, pp. 4325–4332.
[10]Lin, S.H., Lo, C.C., 1997, “Fenton process for treatment of desizing wastewater”, Water Res., vol. 31, pp. 2050–2056.
[11]Walling, C., Kato, S., 1971, “Oxidation of alcohols by Fenton’s reagent. Effect of copper ion”, J. Am. Chem. Soc., vol. 93, pp. 4275–4281.
[12]Lei, L., Hu, X., Yue, P.L., Bossmann, S.H., Göb, S., Braun, A.M., 1998, “Oxidative degradation of polyvinyl alcohol by te photocemically enhanced Fenton reaction”, J. Photochem. Photobiol. A: Chem., vol. 116, pp. 159–66.
[13]Kang, S.F., Liao, C.H., Po, S.T., 2000, “Decolorization of textile wastewater by photo-Fenton oxidation technology”, Chemosphere, vol. 41, pp. 1287–1294.
[14]Giroto, J.A., Guardani, R., Teixeira, A.C.S.C., Nascimento, C.A.O., 2006, “Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution”, Chem. Eng. and Process, vol. 45, pp. 523–532.
[15]Kim, S., Kim, T.H., Park, C., Shin, E.B., 2003, “Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode”, Desalination, vol. 155, pp. 49–57.
[16]Zhang, S.J., Yu, H.Q., 2004, “Radiation-induced degradation of polyvinyl alcohol in aqueous solutions”, Water Res., vol. 38, pp. 309–316.
[17]Behera, S.K., Kim, J.H., Guo, X., Park, H.S., 2008, “Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon”, J. Hazard. Mater., vol. 153, pp. 1207–1214.
[18]Pang, X.Y., 2012, “Adsorption characteristics of polyvinyl alcohols in solution on expanded graphite”, E-J. Chem., vol. 9, pp. 240–252.
[19]Hsu, L.J., Lee, L.T., Lin, C.C., 2011, “Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2”, Chem. Eng. J., vol. 173, pp. 698–705.
[20]Chen, Y. X., Sun, Z.S., Yang, Y., Ke, Q., 2001, “Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water”, J. Photochem. Photobiol. A: Chem., vol. 142, pp. 85–89.
[21]Lin, C.C., Lee, L.T., Hsu, L.J., 2013, “Performance of UV/S2O82- process in degrading polyvinyl alcohol in aqueous solutions”, J. Photoch. Photobio. A, vol. 252, pp. 1–7.
[22]Hamad, D., Mehrvar, M., Dhib, R., 2014, “Experimental study of polyvinyl alcool degradation in aquoues solution by UV/H2O2 process”, Polym. Degrad. Stabil., vol. 103, pp. 75–82.
[23]陳庭悅,2009,“光輔助電化學方法之水楊酸降解反應研究”,國立台灣大學化學工程研究所,碩士論文。
[24]Thiruvenkatachari, R., Kwon, T.O., Jun, J.C., Balaji, S., Matheswaran, M., Moon, I.S., 2007, “Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA)”, J. Hazard. Mater., vol. 142, pp. 308–314.
[25]Parsons, S., 2004, “Advanced oxidation processes for water and wastewater treatment”, IWA, London.
[26]Vogelpohl, A., 2007, “Applications of AOPs in wastewater treatment”, Water Sci. Technol., vol. 55, pp. 207–211.
[27]Suryaman, D., Hasegawa, K., Kagaya, S., 2007, “Combined biological and photocatalytic treatment for mineralization of phenol in water”, Chemosphere, vol. 65, pp. 2502–2506.
[28]Fenton, H.J.J., 1984, “Oxidation of tartaric acid in the presence of iron”, J. Chem Soc., trans, vol. 65, pp. 899–901.
[29]陳進揚,2006,“以Fenton法及UV/H2O2結合Ferrite Process處理印刷電路板廢水之研究”,國立中山大學環境工程研究所,碩士論文。
[30]Hengyi, L., Hualiang, L., Zhong, L., Zhaoxu, Li, Kai, C., Xinghong, Z., Huiqin, W., 2010, “Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode”, Process Saf. Environ., vol. 88, pp. 431–438.
[31]Liu, W., Ai, Z., Zhang, L., 2012, “Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment”, J. Hazard. Mater.,vol. 243, pp. 257–264.
[32]Brillas, E., Banos, M.A., Garrido, J.A., 2003, “Mineralization of berbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelecto-Fenton”, Electrochim. Acta, vol. 48, pp. 1697–1705.
[33]Garcia-Segura, S., Garrido, J.A., Rodriguez, R.M., Cabot, P.L., Centellas, F., Arias, C., Brillas, E., 2012, “Mineralization of flumequine in acidic medium by electro-Fenton and photoelectron-Fenton processes”, Water Res., vol. 46, pp. 2067–2076.
[34]Maezono, T., Tokumura, M., Sekine, M., Kawase, Y., 2011, “Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II”, Chemosphere, vol. 82, pp. 1422–1430.
[35]Stumm, W., Morgan, J.J., 1996, “Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters”, John Wiley& Sons, New York, 1996.
[36]劉得兆,2012,“以電混凝及電芬頓技術處理水楊酸溶液之研究”,弘光科技大學職業安全與防災研究所,碩士論文。
[37]Wang, Y., Liu, H., Liu, T., Song, S., Gui, X., Liu, H., Tsiakaras, P., 2014, “Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode”, Appl. Catal. B: Environ., vol. 156–157, pp. 1–7.
[38]Wang, Q., Lemley, A.T., 2002, “Oxidation of diazinon by anodic Fenton treatement”, Water Res., vol. 36, pp. 3237–3244.
[39]Kang, S.F., Liao, C.H., Po, S.T., 2000, “Decolorization of textile wastewater by photo-fenton oxidation technology”, Chemosphere, vol. 41, pp. 1287–1294.
[40]Ravichandran, L., Selvam, K., Swaminathan, M., 2007, “Photo-Fenton defluoridation of pentafluorobenzoic acid with UV-C light”, J. Photoch. Photobio. A, vol. 188, pp. 392–398.
[41]Hermosilla, D., Cortijo, M., Huang, C.P., 2009, “Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes”, Sci. Total Environ, vol. 407, pp. 3473–3481.
[42]Kavitha, V., Palanivelu, K., 2004, “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol”, Chemosphere, vol. 55, pp. 1235–1243.
[43]Almeida, L.C., Garcia-Segura, S., Bocchi, N., Brillas, E., 2011, “Solar photoelectron-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology”, Appl. Catal. B: Environ., vol. 103, pp. 21–30.
[44]Huang, Y.H., Huang, Y.J., Tasi, H.C., Chen, H.T., 2010, “Degradation of phenol using low concentration of ferric ions by the photo-Fenton process”, J. Taiwan Inst. Chem. E., vol. 41, pp. 699–704.
[45]Bandala, E.R., Peláez, M.A., Torres, M.J., Torres, L., 2008, “Degradation of sodium dodecyl sulpate in water using solar driven Fenton-like advanced oxidation processes”, J. Hazard. Mater., vol. 151, pp. 578–584.
[46]Pérez-Moya, M., Graells, M., Castells, G., Amigó, J., Ortega, E., Buhigas, G., Pérez, L.M., Mansilla, H.D., 2010, “Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process”, Water Res., vol. 44, pp. 2533–2540.
[47]Kwan, W.P., Voelker, B.M., 2003, “Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton like systems”, Environ. Sci. Tecnol., vol. 37, pp. 1150–1158.
[48]Luo, W., Zhu, L.H., Wang, N., Tang, H.Q., Cao, M.J., She, Y.B., 2010, “Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusableheterogeneous Fenton-like catalyst”, Environ. Sci. Tecnol., vol. 44, pp. 1786–1791.
[49]Ji, F., Li, C., Zhang, J., Deng, L., 2011, “Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst”, J. Hazard. Mater., vol. 186, pp. 1979–1984.
[50]Polo-López, M.I., Castro-Alférez, M., Oller, I., Fernández-Ibáñez, P., 2014, “Asdessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater”, Chem. Eng. J., vol. 257, pp. 122–130.
[51]Miralles-Cuevas, S., Oller, I., Sánchez Pérez, J.A., Malato, S., 2014, “Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH”, Water Res., vol. 64, pp. 23–31.
[52]王文德,2004,“電極及反應媒子對氯酚電解氧化影響之探討”,輔英科技大學環境工程衛生系碩士班,碩士論文。
[53]Gandini, D., Mahé, E., Michaud, P.A., Haenni, W., Perret, A., Comninellis, Ch., 2000, “Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment”, J. Appl. Electrochem., vol. 30, pp. 1345–1350.
[54]邱騰葦,2012,“使用鈰(IV)離子降解水中水楊酸之研究”,中華醫事科技大學生物安全衛生研究所,碩士論文。
[55]謝長原,2002,“電解催化氧化氯酚之研究”,國立成功大學環境工程系,碩士論文。
[56]卓錦江,1988,“應用媒子當電極觸媒間接電解合成有機化合物”,國立成功大學化學工程研究所,博士論文。
[57]Farmer, J.C., Wang, F.T., Lewis, P.R., Summers, L.J., 1992, “Destruction of chlorinated organics by Cobalt(III)-mediated electrochemical oxidation”, J. Electrochem. Soc., 139, 3025–3029, 1992.
[58]Bringmann, J., Ebert, K., Galla, U., Schmieder, H., 1995, “Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV)”, J. Appl. Electrochem., vol. 25, pp. 846–851.
[59]Chung, Y.H., Park, S.M., 2000, “Destruction of aniline by mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators”, J. Appl. Electrochem., vol. 30, pp. 685–691.
[60]Farmer, J.C., Wang, F.T., Hawley-Fedder, R.A., Lewis, P.R., Summers, L.J., Foiles, L., 1992, “Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver (II)”, J. Electrochem. Soc., vol. 139, pp. 654–662.
[61]Balaji, S., Chung, S.J., Thiruvenkatachari, R., Moon, I.S., 2007, “Mediated electrochemical oxidation process: Electro-oxidation of cerium(III) to cerium(IV) in nitric acid medium and a study on phenol degradation by cerium(IV) oxidant”, Chem. Eng. J., vol. 126, pp. 51–57.
[62]Martha, E.A.A., Diaz, A.F., 2005, “Oxidation of benzoic acid by electrochemically generated Ce(IV)”, Environ. Sci. Technol., vol. 39, pp. 5872–5877.
[63]Kokovkin, V.V., Chung, S.J., Balaji, S., Matheswaran, M., Moon, I.S., 2007, “Electrochemical cell current requirements for toxic organic waste destruction in Ce(IV)-mediated electrochemical oxidation process”, Korean J. Chem. Eng., vol. 24, pp. 749–756.
[64]Balaji, S., Chung, S.J., Vasilivich, K.V., Moon, I.S., 2008, “Destruction of organic pollutants by cerium(IV) MEO process: A study on the influence of process conditions for EDTA mineralization”, J. Hazard. Mater., vol. 150, pp. 596–603.
[65]Balaji, S., Kokovkin, V.V., Chung, S.J., Moon, I.S., 2008, “Destruction of EDTA by mediated electrochemical oxidation process: Monitoring by continuous CO2 measurements”, Water Res., vol. 41, pp. 1423–1432.
[66]Modiba, P., Crouch, A.M., 2008, “Electrochemical study of cerium(IV) in the presence of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetate (DTPA) ligands”, J. Appl. Electrochem., vol. 38, pp. 1293–1299.
[67]Huang, K.L., Chen, T.S., Yeh, K.J.C., 2009, “Regeneration of Ce(IV) in simulated spent Cr-etching solutions using an undivided cell”, J. Hazard. Mater., vol. 171, pp. 755–760.
[68]Ren, X., Wei, Q., 2011, “A simple modeling study of the Ce(IV) regeneration in sulfuric acid solutions”, J. Hazard. Mater., vol. 192, pp. 779–785.
[69]Chen, T.S., Huang, K.L., Pan, Y.C., 2012, “Electrochemical versus Ce(IV)-mediated electrochemical oxidation (MEO) degradation of Acetaminophen in aqueous solutions”, Int. J. Electrochem. Sc., vol. 7, pp. 11191–11205.
[70]張博銘,2002,“以光電氧化法處理水中高濃度醋酸之研究”,國立台灣大學環境工程學研究所,碩士論文。
[71]Ghaly, M.Y., Härtel, G., Mayer, R., Haseneder, R., 2001, “Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study”, Waste Manage., vol. 21, pp. 41–47.
[72]Zhao, G., Lu, X., Zhao, Y., Gu, Q., 2013, “Simultaneous humic acid removal and bromate control by O3 and UV/O3 process”, Chem. Eng. J., vol. 232, pp. 74–80, 201.
[73]Zhang, A., Li, Y., 2014, “Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix”, Sci. Total Environ., vol. 493, pp. 307–323.
[74]Illés, E., Szabó, E., Takács, E., Wojnárovits, L., Dombi, A., Gajda-Schrantz, K., 2014, “Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity”, Sci. Total Environ., vol. 472, pp. 178–184.
[75]彭禹祥,2009,“製備TiO2/zeolite光觸媒管柱系統降解水中反應性染料之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文。
[76]Yue, P.L., 1993, “Modelling of kinetics and reator for water purification by photo-oxidation”, Chem. Eng. Sci., vol. 48, pp. 1–11.
[77]Weir, B.A., Sundstromm, D.W., 1993, “Destruction of trichloroethylene by UV light-catalyzed oxidation wit hydrogen peroxide”, Chemosphere, vol. 27, pp. 1279–1291.
[78]Mohey El-Dein, A., Libra, J.A., Wiesmann, U., 2003, “Mechanism and kinetic model for the decolorizaiton of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation”, Chemosphere, vol. 52, pp. 1069–1077.
[79]Neamtu, M., Siminiceanu, I., Yediler, A., Kettrup, A., 2002, “Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation”, Dyes Pigments, vol. 53, pp. 93–99.
[80]Behnajady, M.A., Modirshahla, N., 2006, “Kinetic modeling on photooxidative degradation of C.I. Acid Orange 7 in a tubular continuous-flow photoreactor”, Chemosphere, vol. 62, pp. 1543–1548.
[81]Muruganandham, M., Swaminathan, M., 2004, “Photochemical oxidation of reactive azo dye with UV-H2O2 process”, Dyes Pigments, vol. 62, pp. 269–275.
[82]Shu, H.Y., Chang, M.C., Fan, H.J., 2004, “Decolorization of dye acid black 1 by the UV/H2O2 process and optimization of operating parameters”, J. Hazard. Mater., vol. 113, pp. 201–208.
[83]Modirshahla, N., Behnajady, M.A., 2006, “Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling”, Dyes Pigments, vol. 70, pp. 54–59.
[84]Taylor, R.J., Humffray, A.A., 1975, “Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of low pH (pH<10)”, J. Electroanal. Chem., 64, 85–94, 1975.
[85]Wang, C.T, Hu, J.L., Chou, W.L., Kuo, Y.M., 2008, “Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode”, J. Hazard. Mater., vol. 152, pp. 601–606.
[86]Kumar, A., Mehrotra, R.N., 1975, “Kinetic of oxidation of aldo sugars by quinquevalent vanadium ion in acid medium”, J. Org. Chem., vol. 40, pp. 1248–1252.
[87]Sala L.F., Cirelli, A.F., De Lederkremer, R.M., 1977, “Oxidative decarboxylation of aldonolactones by Cerium (IV) sulphate in aqueous sulphuric acid; synthesis of D-arabinose”, J. Chem. Soc. Perkin Trans., vol. 2, pp. 685–688.
[88]Gupta, K.K.S., Basu, S.N., 1980, “Kinetics and mechanism of oxidation of D-glucose and in perchloric acid medium”, Carbohydr. Res., vol. 80, pp. 223–232.
[89]謝志河,1990,“以硫酸鈰(IV)為氧化還原媒子間接陽極氧化葡萄糖酸內酯”,國立成功大學化學工程研究所,碩士論文。
[90]Randle, T.H., Kuhn, A.K., 1983, “Kinetics and mechanism of the cerium(IV)/cerium(III) redox reaction on a platinum electrode”, J. Chem. Soc. Faraday Trans., vol. 179, pp. 1741–1756.
[91]Chou, W.L., Wang, C.T., Chang, S.Y., 2009, “Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption”, J. Hazard. Mater., vol. 168, pp. 1200–1207.
[92]Chou, W.L., Wang, C.T., Huang, K.Y., 2009, “Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption”, J. Hazard. Mater., vol. 167, pp. 467–474.
[93]Varela, J., Oberg, S., Neustedter, T.M., Nelson, N., 2001, “Non-thermal organic waste destruction: characterization of the cerox system 4”, Environ. Prog., vol. 20, pp. 261–271.
[94]Kharabadze, N.I., 1965, “Anode processes in strongly acidic Mn sulfate solutions”, C. A., vol. 62, pp. 3664.
[95]Panizza, M., Qturan, M.A., 2011, “Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode”, Electrochim. Acta, vol. 56, pp. 7084–7087.
[96]Chu, Y.Y., Qian, Y., Wang, W.J., Deng, X. L., 2012 “A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation” , J. Hazard. Mater., vol. 199–200, pp. 179–185.
[97]Sirés, I., Guivarch, E., Oturan, N., Oturan, M.A., 2008, “Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode”, Chemosphere, vol. 72, pp. 592–600.
[98]Khataee, A.R., Zarei, M., Moradkhannejhad, L., 2010, “Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode”, Desalination, vol. 258, pp. 112–119.
[99]Xie, Y.B., Li, X.Z., 2006, “Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes”, Mater. Chem. Phys., vol. 95, pp. 39–50.
[100] Brillas, E., Calpe, J.C., Casado, J., 2000, “Mineralization of 2,4-D by advanced electrochemical oxidation processes”, Water Res., vol. 34, pp. 2253–2262.
[101] Yuan, S., Lu ,X., 2005, “Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation”, J. Hazard. Mater., vol. 118, pp. 85–92.
[102] Martínez-Huitle, C.A., Brillas, E., 2009, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical method: A general review”, Appl. Catal. B: Environ., vol. 87, pp. 105–145.
[103] Özcan, A., Šahin, Y., Koparal, A.S., Oturan, M.A., 2008, “Carbon sponge as a new material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, pp. 71–78.
[104] Zhou, M., Yu, Q., Lei, L., Barton, G., 2007, “Electro-Fenton method for the removal of methyl red in an efficient electrochemical system”, Sep. Purif. Technol., vol. 57, pp. 380–387.
[105] Ting, W.P., Lu, M.C., Huang, Y.H., 2009, “Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process”, J. Hazard. Mater., vol. 161, pp. 1484–1490.
[106] Golnabi, H., Matloob, M.R., Bahar, M., Sharifian, M., 2009, “Investigation of electrical conductivity of different water liquids and electrolyte solutions”, J. Theor. Appl. Phys., vol. 3, pp. 24–28.
[107] Daneshvar, N., Rabbani, M., Modirshahla, N., Behnajady, M.A., 2004, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27)”, Chemosphere, vol. 56, pp. 895–900.
[108] 熊楚強、王月,2004,“電化學”,新文京開發出版股份有限公司。
[109] Potter, E.C., 1961, “Electrochemistry”, Cleaver-Hume Press, pp.148.
[110] Do, J.S., Chao, I.Y., 1999, “Effect of Flow Rate on the Paired Oxidative Degradation of Formaldehdye in a CSTER”, J. Chin. Inst. Chem. Engrs., vol. 30, pp. 329–338.
[111] Khataee, A.R., Safarpour, M., Zarei, M., Aber, S., 2011, “Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters”, J. Electroanal. Chem., vol. 659, pp. 63–68.
[112] Huang, K.Y., Wang, C.T., Chou, W.L., Shu, C.M., 2013, “Removal of polyvinyl alcohol using photoelectrochemcial oxidation processes based on hydrogen peroxide electrogeneration”, Int. J. Photoenergy, vol. 2013, Article ID 841762, 9 pages.
[113] Wang, C.T., Chou, W.L., Huang, C.C., 2013, “Removal of salicylic acid from aqueous solutions by Electro-Fenton using an activated carbon fiber electrode and cathodically generated hydrogen peroxide”, Fresenius Environ. Bull., vol. 22, pp. 2234–2241.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊