[1]Park, S.J., Yoon, T.I., Bae, J.H., Seo, H.J., Park, H.J., 2001, “Biological treatment of wastewater containing dimethyl suplhoxide from the semi-conductor industry”, Process Biochem., vol. 36, pp. 579–589.
[2]中華民國行政院環保署環保法規網站網頁。2013。網址為:http://ivy5.epa.gov.tw/epalaw/index.aspx
[3]Kusic, H., Peternel, I., Ukic, S., Koprivanac, N., Bolanca, T., Papic, S., Bozic, A.L., 2011, “Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix”, Chem. Eng. J., vol. 172, pp. 109–121.
[4]Xu, X., Li, X., 2010, “Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion”, Sep. Purif. Technol., vol. 72, pp. 105–111.
[5]戈進杰,2002,“生物降解高分子材料及其應用”,化學工業出版社。
[6]李昉懌,2008,“含聚乙烯醇廢液之處理”,國立台灣大學高分子科學與工程學研究所,碩士論文。[7]Tokiwa, Y., Kawabata, G., Jarerat, A., 2001, “A modified method for isolating poly (vinyl alcohol)-degrading bacteria and study of their degradation patterns”, Biotechnol. Lett., vol. 23,pp. 1937–1941.
[8]Kobayashi, M., Toguchida, J., Masanori, O., 2001, “Development of the shields for tendon injury repair using polyvinyl alcohol-hyreogel (PVA-H)”, J. Biomed. Mater. Res., vol. 58, pp. 344–351.
[9]Schmedlen, R.H., Masters, K.S., West, J.L., 2002, “Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering”, Biomaterials, vol. 23, pp. 4325–4332.
[10]Lin, S.H., Lo, C.C., 1997, “Fenton process for treatment of desizing wastewater”, Water Res., vol. 31, pp. 2050–2056.
[11]Walling, C., Kato, S., 1971, “Oxidation of alcohols by Fenton’s reagent. Effect of copper ion”, J. Am. Chem. Soc., vol. 93, pp. 4275–4281.
[12]Lei, L., Hu, X., Yue, P.L., Bossmann, S.H., Göb, S., Braun, A.M., 1998, “Oxidative degradation of polyvinyl alcohol by te photocemically enhanced Fenton reaction”, J. Photochem. Photobiol. A: Chem., vol. 116, pp. 159–66.
[13]Kang, S.F., Liao, C.H., Po, S.T., 2000, “Decolorization of textile wastewater by photo-Fenton oxidation technology”, Chemosphere, vol. 41, pp. 1287–1294.
[14]Giroto, J.A., Guardani, R., Teixeira, A.C.S.C., Nascimento, C.A.O., 2006, “Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution”, Chem. Eng. and Process, vol. 45, pp. 523–532.
[15]Kim, S., Kim, T.H., Park, C., Shin, E.B., 2003, “Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode”, Desalination, vol. 155, pp. 49–57.
[16]Zhang, S.J., Yu, H.Q., 2004, “Radiation-induced degradation of polyvinyl alcohol in aqueous solutions”, Water Res., vol. 38, pp. 309–316.
[17]Behera, S.K., Kim, J.H., Guo, X., Park, H.S., 2008, “Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon”, J. Hazard. Mater., vol. 153, pp. 1207–1214.
[18]Pang, X.Y., 2012, “Adsorption characteristics of polyvinyl alcohols in solution on expanded graphite”, E-J. Chem., vol. 9, pp. 240–252.
[19]Hsu, L.J., Lee, L.T., Lin, C.C., 2011, “Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2”, Chem. Eng. J., vol. 173, pp. 698–705.
[20]Chen, Y. X., Sun, Z.S., Yang, Y., Ke, Q., 2001, “Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water”, J. Photochem. Photobiol. A: Chem., vol. 142, pp. 85–89.
[21]Lin, C.C., Lee, L.T., Hsu, L.J., 2013, “Performance of UV/S2O82- process in degrading polyvinyl alcohol in aqueous solutions”, J. Photoch. Photobio. A, vol. 252, pp. 1–7.
[22]Hamad, D., Mehrvar, M., Dhib, R., 2014, “Experimental study of polyvinyl alcool degradation in aquoues solution by UV/H2O2 process”, Polym. Degrad. Stabil., vol. 103, pp. 75–82.
[23]陳庭悅,2009,“光輔助電化學方法之水楊酸降解反應研究”,國立台灣大學化學工程研究所,碩士論文。[24]Thiruvenkatachari, R., Kwon, T.O., Jun, J.C., Balaji, S., Matheswaran, M., Moon, I.S., 2007, “Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA)”, J. Hazard. Mater., vol. 142, pp. 308–314.
[25]Parsons, S., 2004, “Advanced oxidation processes for water and wastewater treatment”, IWA, London.
[26]Vogelpohl, A., 2007, “Applications of AOPs in wastewater treatment”, Water Sci. Technol., vol. 55, pp. 207–211.
[27]Suryaman, D., Hasegawa, K., Kagaya, S., 2007, “Combined biological and photocatalytic treatment for mineralization of phenol in water”, Chemosphere, vol. 65, pp. 2502–2506.
[28]Fenton, H.J.J., 1984, “Oxidation of tartaric acid in the presence of iron”, J. Chem Soc., trans, vol. 65, pp. 899–901.
[29]陳進揚,2006,“以Fenton法及UV/H2O2結合Ferrite Process處理印刷電路板廢水之研究”,國立中山大學環境工程研究所,碩士論文。[30]Hengyi, L., Hualiang, L., Zhong, L., Zhaoxu, Li, Kai, C., Xinghong, Z., Huiqin, W., 2010, “Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode”, Process Saf. Environ., vol. 88, pp. 431–438.
[31]Liu, W., Ai, Z., Zhang, L., 2012, “Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment”, J. Hazard. Mater.,vol. 243, pp. 257–264.
[32]Brillas, E., Banos, M.A., Garrido, J.A., 2003, “Mineralization of berbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelecto-Fenton”, Electrochim. Acta, vol. 48, pp. 1697–1705.
[33]Garcia-Segura, S., Garrido, J.A., Rodriguez, R.M., Cabot, P.L., Centellas, F., Arias, C., Brillas, E., 2012, “Mineralization of flumequine in acidic medium by electro-Fenton and photoelectron-Fenton processes”, Water Res., vol. 46, pp. 2067–2076.
[34]Maezono, T., Tokumura, M., Sekine, M., Kawase, Y., 2011, “Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II”, Chemosphere, vol. 82, pp. 1422–1430.
[35]Stumm, W., Morgan, J.J., 1996, “Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters”, John Wiley& Sons, New York, 1996.
[36]劉得兆,2012,“以電混凝及電芬頓技術處理水楊酸溶液之研究”,弘光科技大學職業安全與防災研究所,碩士論文。[37]Wang, Y., Liu, H., Liu, T., Song, S., Gui, X., Liu, H., Tsiakaras, P., 2014, “Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode”, Appl. Catal. B: Environ., vol. 156–157, pp. 1–7.
[38]Wang, Q., Lemley, A.T., 2002, “Oxidation of diazinon by anodic Fenton treatement”, Water Res., vol. 36, pp. 3237–3244.
[39]Kang, S.F., Liao, C.H., Po, S.T., 2000, “Decolorization of textile wastewater by photo-fenton oxidation technology”, Chemosphere, vol. 41, pp. 1287–1294.
[40]Ravichandran, L., Selvam, K., Swaminathan, M., 2007, “Photo-Fenton defluoridation of pentafluorobenzoic acid with UV-C light”, J. Photoch. Photobio. A, vol. 188, pp. 392–398.
[41]Hermosilla, D., Cortijo, M., Huang, C.P., 2009, “Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes”, Sci. Total Environ, vol. 407, pp. 3473–3481.
[42]Kavitha, V., Palanivelu, K., 2004, “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol”, Chemosphere, vol. 55, pp. 1235–1243.
[43]Almeida, L.C., Garcia-Segura, S., Bocchi, N., Brillas, E., 2011, “Solar photoelectron-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology”, Appl. Catal. B: Environ., vol. 103, pp. 21–30.
[44]Huang, Y.H., Huang, Y.J., Tasi, H.C., Chen, H.T., 2010, “Degradation of phenol using low concentration of ferric ions by the photo-Fenton process”, J. Taiwan Inst. Chem. E., vol. 41, pp. 699–704.
[45]Bandala, E.R., Peláez, M.A., Torres, M.J., Torres, L., 2008, “Degradation of sodium dodecyl sulpate in water using solar driven Fenton-like advanced oxidation processes”, J. Hazard. Mater., vol. 151, pp. 578–584.
[46]Pérez-Moya, M., Graells, M., Castells, G., Amigó, J., Ortega, E., Buhigas, G., Pérez, L.M., Mansilla, H.D., 2010, “Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process”, Water Res., vol. 44, pp. 2533–2540.
[47]Kwan, W.P., Voelker, B.M., 2003, “Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton like systems”, Environ. Sci. Tecnol., vol. 37, pp. 1150–1158.
[48]Luo, W., Zhu, L.H., Wang, N., Tang, H.Q., Cao, M.J., She, Y.B., 2010, “Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusableheterogeneous Fenton-like catalyst”, Environ. Sci. Tecnol., vol. 44, pp. 1786–1791.
[49]Ji, F., Li, C., Zhang, J., Deng, L., 2011, “Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst”, J. Hazard. Mater., vol. 186, pp. 1979–1984.
[50]Polo-López, M.I., Castro-Alférez, M., Oller, I., Fernández-Ibáñez, P., 2014, “Asdessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater”, Chem. Eng. J., vol. 257, pp. 122–130.
[51]Miralles-Cuevas, S., Oller, I., Sánchez Pérez, J.A., Malato, S., 2014, “Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH”, Water Res., vol. 64, pp. 23–31.
[52]王文德,2004,“電極及反應媒子對氯酚電解氧化影響之探討”,輔英科技大學環境工程衛生系碩士班,碩士論文。[53]Gandini, D., Mahé, E., Michaud, P.A., Haenni, W., Perret, A., Comninellis, Ch., 2000, “Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment”, J. Appl. Electrochem., vol. 30, pp. 1345–1350.
[54]邱騰葦,2012,“使用鈰(IV)離子降解水中水楊酸之研究”,中華醫事科技大學生物安全衛生研究所,碩士論文。[55]謝長原,2002,“電解催化氧化氯酚之研究”,國立成功大學環境工程系,碩士論文。[56]卓錦江,1988,“應用媒子當電極觸媒間接電解合成有機化合物”,國立成功大學化學工程研究所,博士論文。[57]Farmer, J.C., Wang, F.T., Lewis, P.R., Summers, L.J., 1992, “Destruction of chlorinated organics by Cobalt(III)-mediated electrochemical oxidation”, J. Electrochem. Soc., 139, 3025–3029, 1992.
[58]Bringmann, J., Ebert, K., Galla, U., Schmieder, H., 1995, “Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV)”, J. Appl. Electrochem., vol. 25, pp. 846–851.
[59]Chung, Y.H., Park, S.M., 2000, “Destruction of aniline by mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators”, J. Appl. Electrochem., vol. 30, pp. 685–691.
[60]Farmer, J.C., Wang, F.T., Hawley-Fedder, R.A., Lewis, P.R., Summers, L.J., Foiles, L., 1992, “Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver (II)”, J. Electrochem. Soc., vol. 139, pp. 654–662.
[61]Balaji, S., Chung, S.J., Thiruvenkatachari, R., Moon, I.S., 2007, “Mediated electrochemical oxidation process: Electro-oxidation of cerium(III) to cerium(IV) in nitric acid medium and a study on phenol degradation by cerium(IV) oxidant”, Chem. Eng. J., vol. 126, pp. 51–57.
[62]Martha, E.A.A., Diaz, A.F., 2005, “Oxidation of benzoic acid by electrochemically generated Ce(IV)”, Environ. Sci. Technol., vol. 39, pp. 5872–5877.
[63]Kokovkin, V.V., Chung, S.J., Balaji, S., Matheswaran, M., Moon, I.S., 2007, “Electrochemical cell current requirements for toxic organic waste destruction in Ce(IV)-mediated electrochemical oxidation process”, Korean J. Chem. Eng., vol. 24, pp. 749–756.
[64]Balaji, S., Chung, S.J., Vasilivich, K.V., Moon, I.S., 2008, “Destruction of organic pollutants by cerium(IV) MEO process: A study on the influence of process conditions for EDTA mineralization”, J. Hazard. Mater., vol. 150, pp. 596–603.
[65]Balaji, S., Kokovkin, V.V., Chung, S.J., Moon, I.S., 2008, “Destruction of EDTA by mediated electrochemical oxidation process: Monitoring by continuous CO2 measurements”, Water Res., vol. 41, pp. 1423–1432.
[66]Modiba, P., Crouch, A.M., 2008, “Electrochemical study of cerium(IV) in the presence of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetate (DTPA) ligands”, J. Appl. Electrochem., vol. 38, pp. 1293–1299.
[67]Huang, K.L., Chen, T.S., Yeh, K.J.C., 2009, “Regeneration of Ce(IV) in simulated spent Cr-etching solutions using an undivided cell”, J. Hazard. Mater., vol. 171, pp. 755–760.
[68]Ren, X., Wei, Q., 2011, “A simple modeling study of the Ce(IV) regeneration in sulfuric acid solutions”, J. Hazard. Mater., vol. 192, pp. 779–785.
[69]Chen, T.S., Huang, K.L., Pan, Y.C., 2012, “Electrochemical versus Ce(IV)-mediated electrochemical oxidation (MEO) degradation of Acetaminophen in aqueous solutions”, Int. J. Electrochem. Sc., vol. 7, pp. 11191–11205.
[70]張博銘,2002,“以光電氧化法處理水中高濃度醋酸之研究”,國立台灣大學環境工程學研究所,碩士論文。[71]Ghaly, M.Y., Härtel, G., Mayer, R., Haseneder, R., 2001, “Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study”, Waste Manage., vol. 21, pp. 41–47.
[72]Zhao, G., Lu, X., Zhao, Y., Gu, Q., 2013, “Simultaneous humic acid removal and bromate control by O3 and UV/O3 process”, Chem. Eng. J., vol. 232, pp. 74–80, 201.
[73]Zhang, A., Li, Y., 2014, “Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix”, Sci. Total Environ., vol. 493, pp. 307–323.
[74]Illés, E., Szabó, E., Takács, E., Wojnárovits, L., Dombi, A., Gajda-Schrantz, K., 2014, “Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity”, Sci. Total Environ., vol. 472, pp. 178–184.
[75]彭禹祥,2009,“製備TiO2/zeolite光觸媒管柱系統降解水中反應性染料之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文。[76]Yue, P.L., 1993, “Modelling of kinetics and reator for water purification by photo-oxidation”, Chem. Eng. Sci., vol. 48, pp. 1–11.
[77]Weir, B.A., Sundstromm, D.W., 1993, “Destruction of trichloroethylene by UV light-catalyzed oxidation wit hydrogen peroxide”, Chemosphere, vol. 27, pp. 1279–1291.
[78]Mohey El-Dein, A., Libra, J.A., Wiesmann, U., 2003, “Mechanism and kinetic model for the decolorizaiton of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation”, Chemosphere, vol. 52, pp. 1069–1077.
[79]Neamtu, M., Siminiceanu, I., Yediler, A., Kettrup, A., 2002, “Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation”, Dyes Pigments, vol. 53, pp. 93–99.
[80]Behnajady, M.A., Modirshahla, N., 2006, “Kinetic modeling on photooxidative degradation of C.I. Acid Orange 7 in a tubular continuous-flow photoreactor”, Chemosphere, vol. 62, pp. 1543–1548.
[81]Muruganandham, M., Swaminathan, M., 2004, “Photochemical oxidation of reactive azo dye with UV-H2O2 process”, Dyes Pigments, vol. 62, pp. 269–275.
[82]Shu, H.Y., Chang, M.C., Fan, H.J., 2004, “Decolorization of dye acid black 1 by the UV/H2O2 process and optimization of operating parameters”, J. Hazard. Mater., vol. 113, pp. 201–208.
[83]Modirshahla, N., Behnajady, M.A., 2006, “Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling”, Dyes Pigments, vol. 70, pp. 54–59.
[84]Taylor, R.J., Humffray, A.A., 1975, “Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of low pH (pH<10)”, J. Electroanal. Chem., 64, 85–94, 1975.
[85]Wang, C.T, Hu, J.L., Chou, W.L., Kuo, Y.M., 2008, “Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode”, J. Hazard. Mater., vol. 152, pp. 601–606.
[86]Kumar, A., Mehrotra, R.N., 1975, “Kinetic of oxidation of aldo sugars by quinquevalent vanadium ion in acid medium”, J. Org. Chem., vol. 40, pp. 1248–1252.
[87]Sala L.F., Cirelli, A.F., De Lederkremer, R.M., 1977, “Oxidative decarboxylation of aldonolactones by Cerium (IV) sulphate in aqueous sulphuric acid; synthesis of D-arabinose”, J. Chem. Soc. Perkin Trans., vol. 2, pp. 685–688.
[88]Gupta, K.K.S., Basu, S.N., 1980, “Kinetics and mechanism of oxidation of D-glucose and in perchloric acid medium”, Carbohydr. Res., vol. 80, pp. 223–232.
[89]謝志河,1990,“以硫酸鈰(IV)為氧化還原媒子間接陽極氧化葡萄糖酸內酯”,國立成功大學化學工程研究所,碩士論文。[90]Randle, T.H., Kuhn, A.K., 1983, “Kinetics and mechanism of the cerium(IV)/cerium(III) redox reaction on a platinum electrode”, J. Chem. Soc. Faraday Trans., vol. 179, pp. 1741–1756.
[91]Chou, W.L., Wang, C.T., Chang, S.Y., 2009, “Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption”, J. Hazard. Mater., vol. 168, pp. 1200–1207.
[92]Chou, W.L., Wang, C.T., Huang, K.Y., 2009, “Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption”, J. Hazard. Mater., vol. 167, pp. 467–474.
[93]Varela, J., Oberg, S., Neustedter, T.M., Nelson, N., 2001, “Non-thermal organic waste destruction: characterization of the cerox system 4”, Environ. Prog., vol. 20, pp. 261–271.
[94]Kharabadze, N.I., 1965, “Anode processes in strongly acidic Mn sulfate solutions”, C. A., vol. 62, pp. 3664.
[95]Panizza, M., Qturan, M.A., 2011, “Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode”, Electrochim. Acta, vol. 56, pp. 7084–7087.
[96]Chu, Y.Y., Qian, Y., Wang, W.J., Deng, X. L., 2012 “A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation” , J. Hazard. Mater., vol. 199–200, pp. 179–185.
[97]Sirés, I., Guivarch, E., Oturan, N., Oturan, M.A., 2008, “Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode”, Chemosphere, vol. 72, pp. 592–600.
[98]Khataee, A.R., Zarei, M., Moradkhannejhad, L., 2010, “Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode”, Desalination, vol. 258, pp. 112–119.
[99]Xie, Y.B., Li, X.Z., 2006, “Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes”, Mater. Chem. Phys., vol. 95, pp. 39–50.
[100] Brillas, E., Calpe, J.C., Casado, J., 2000, “Mineralization of 2,4-D by advanced electrochemical oxidation processes”, Water Res., vol. 34, pp. 2253–2262.
[101] Yuan, S., Lu ,X., 2005, “Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation”, J. Hazard. Mater., vol. 118, pp. 85–92.
[102] Martínez-Huitle, C.A., Brillas, E., 2009, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical method: A general review”, Appl. Catal. B: Environ., vol. 87, pp. 105–145.
[103] Özcan, A., Šahin, Y., Koparal, A.S., Oturan, M.A., 2008, “Carbon sponge as a new material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, pp. 71–78.
[104] Zhou, M., Yu, Q., Lei, L., Barton, G., 2007, “Electro-Fenton method for the removal of methyl red in an efficient electrochemical system”, Sep. Purif. Technol., vol. 57, pp. 380–387.
[105] Ting, W.P., Lu, M.C., Huang, Y.H., 2009, “Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process”, J. Hazard. Mater., vol. 161, pp. 1484–1490.
[106] Golnabi, H., Matloob, M.R., Bahar, M., Sharifian, M., 2009, “Investigation of electrical conductivity of different water liquids and electrolyte solutions”, J. Theor. Appl. Phys., vol. 3, pp. 24–28.
[107] Daneshvar, N., Rabbani, M., Modirshahla, N., Behnajady, M.A., 2004, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27)”, Chemosphere, vol. 56, pp. 895–900.
[108] 熊楚強、王月,2004,“電化學”,新文京開發出版股份有限公司。
[109] Potter, E.C., 1961, “Electrochemistry”, Cleaver-Hume Press, pp.148.
[110] Do, J.S., Chao, I.Y., 1999, “Effect of Flow Rate on the Paired Oxidative Degradation of Formaldehdye in a CSTER”, J. Chin. Inst. Chem. Engrs., vol. 30, pp. 329–338.
[111] Khataee, A.R., Safarpour, M., Zarei, M., Aber, S., 2011, “Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters”, J. Electroanal. Chem., vol. 659, pp. 63–68.
[112] Huang, K.Y., Wang, C.T., Chou, W.L., Shu, C.M., 2013, “Removal of polyvinyl alcohol using photoelectrochemcial oxidation processes based on hydrogen peroxide electrogeneration”, Int. J. Photoenergy, vol. 2013, Article ID 841762, 9 pages.
[113] Wang, C.T., Chou, W.L., Huang, C.C., 2013, “Removal of salicylic acid from aqueous solutions by Electro-Fenton using an activated carbon fiber electrode and cathodically generated hydrogen peroxide”, Fresenius Environ. Bull., vol. 22, pp. 2234–2241.