跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.106) 您好!臺灣時間:2022/12/06 11:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧佩琦
研究生(外文):Pei-Chi Lu
論文名稱:UV/TiO2光觸媒系統自由基捕捉量和偶氮染料降解量之關聯探討
論文名稱(外文):Relationship Between Free Radical Amount and Azo Dyes Degradation in UV/TiO2 Photocatalytical System
指導教授:洪肇嘉洪肇嘉引用關係
指導教授(外文):Jao-Jia Horng
口試委員:董瑞安蔡勇斌
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:167
中文關鍵詞:光催化機制自由基捕捉降解效能(φ)中間產物
外文關鍵詞:Photocatalytical MechanismHydroxyl RadicalDegradation Efficiency of Free Radicals(φ)Intermediates
相關次數:
  • 被引用被引用:2
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
高級氧化法利用自由基破壞污染物,藉由其之強氧化能力降解結構複雜之污染物降解成水及二氧化碳等。本研究探討高級氧化UV/TiO2 系統之反應機制,利用Presto-Kinetics(PK)模擬為系統反應程序探討氫氧自由基降解污染物 Orange Ⅱ(AO7) 之鍵結,顯示系統反應機制,O2•-、‧HO2與 ‧OH反應等活性氧物種有助於提升污染物AO7之降解,可提高光催化降解效率。
實驗印證以反應曲面設計法進行UV/TiO2系統在 pH 3.5、AO7濃度45 mg/L、TiO2:1.5 g/L及pH 5.0、AO7濃度35 mg/L、TiO2:1 g/L之AO7降解效果最佳,且與自由基降解效益(φ)成正相關。由PK模擬降解效能(φ)與去色降解率之結果得知藉由降解效能(φ)可推測TiO2光催化系統降解有機污染物之降解,其R2=0.8871。探討UV/TiO2系統光催化降解AO7染料之因子之交互作用,發現pH vs. AO7之因子間交互作用顯著,其次為AO7 vs. TiO2及pH vs. TiO2之因子間交互作用。
而探討‧OH與污染物及其降解途徑之關係,選用AO7染料做為目標污染物,利用LC–ESI–MS分析探討AO7染料降解時產生之中間產物,推論出TiO2光催化時‧OH攻擊AO7及中間產物之狀況及探討隨時間變化之情形,結果發現降解4小時之中間產物與6、8小時一致,故可藉此推斷其除色效率在4小時已平衡且斷鍵位置為發色基團偶氮雙鍵(N=N)進而生成中間產物;且降解途徑主要有三種:第一,‧OH攻擊染料AO7之偶氮鍵(–N=N–);第二,因萘環開環進而形成較小結構而分解;第三,‧OH攻擊染料AO7之偶氮鍵(–N=N–)後,分解成對氨苯磺酸等再進一步降解成較小分子。

The advanced oxidation processes(AOP)was used to break down organic pollutant by means of generated free radicals. Their strong oxidization abilities were able to degrade complicated organic pollutant into H2O and CO2. This study was aimed at study the possible reaction mechanisms of UV/TiO2 by Presto-Kinetics(PK)software to simulate the system reaction mechanisms of hydroxyl radicals degrading (AO7)through its binding. The PK simulation found that O2•-、‧HO2 and‧OH of active oxygen species could increase advance the degradation of organic pollutant(AO7) and enhanced the rate of photocatalytical degradation.
The positive correlation between degradation of AO7 and the degradation efficiency of free radicals(φ)was at pH 3.5、AO7:45 mg/L、TiO2:1.5 g/L and pH 5.0、AO7:35 mg/L、TiO2:1 g/L for RSM. This research also used PK to simulate the relationship between degradation rate of AO7 and the degradation efficiency of free radicals,R2=0.8871.Therefore, it also indicated degradation efficiency of free radicals(φ)could inference degradation of organic pollutant in UV/TiO2 photocatalytical system. This research also aimed at the interactive effect between each factor for AO7 in UV/TiO2 photocatalytical system.As a result, the interactive effect of pH vs. AO7 was obvious secondly it was pH vs. TiO2.
This research also aimed at the degradation of pathway between ‧OH and organic pollutant. This study investigated the detection of the intermediates by LC–ESI–MS for azo dyes and concluded and varied the intermediates over time while ‧OH attacking AO7 in UV/TiO2 photocatalytical system. As a result, the intermediates of degradation 4hr agreed with degradation 6hr and 8hr. Therefore, it could inference the decoloration rate was equilibrium at 4hr and generated intermediates as a result of breaking of azo group. The main degradation path were as follows:first, ‧OH attacking the azo group of AO7, secondly the naphthalene ring decomposing to form small intermediates, thirdly, sulfanilic acid further decomposing after‧OH attacking the azo group of AO7.

摘要
ABSTRACT
誌謝
目錄
表目錄
圖目錄
第一章 緒論
1.1 研究源起與動機
1.2 研究目的
第二章 文獻回顧
2.1 高級氧化法
2.1.1 高級氧化法程序
2.1.2 自由基概論
2.1.3 自由基生成方式
2.2 光催化機制
2.2.1 光化學反應
2.2.2 光催化反應
2.2.3 二氧化鈦光催化反應機制
2.3二氧化鈦光催化系統影響因子
2.3.1 光觸媒
2.3.2 溶液pH值
2.3.3 污染物濃度
2.3.4 添加微量金屬
2.3.5 溶氧
2.4 偶氮染料AO7光催化反應
2.4.1 偶氮染料降解途徑
2.4.2 偶氮染料光催化反應動力模擬
2.5 自由基捕捉/反應模擬
2.5.1 自由基捕捉
2.5.2 連續催化反應之模擬與降解效能(φ)
第三章 研究方法
3.1 實驗材料與藥品
3.1.1 實驗藥品
3.1.2 實驗設備
3.2 實驗流程
3.3 建立反應機制/ Presto-kinetics模擬軟體
3.3.1 UV/TiO2 反應式
3.3.2 可見光/TiO2 反應式
3.3.3 Presto-kinetics模擬探討
3.4反應曲面法(RSM)/ 降解效能(φ)
3.4.1 反應曲面法 51
3.4.2 降解效能 (φ)
3.5 實驗方法
3.5.1 背景實驗
3.5.2 光催化實驗
3.5.3 分析方法
3.6 樣品分析之QA/QC
3.6.1 pH量測分析
3.6.2 螢光分光光譜儀
3.6.3 總有機碳分析儀
第四章 結果與討論
4.1 UV/TiO2 反應機制
4.1.1 可能之UV/TiO2 系統反應機制
4.1.2 Presto-kinetics模擬UV/TiO2 反應機制
4.2 可見光/TiO2 反應機制
4.2.1可能之可見光/TiO2 系統反應機制
4.2.2 Presto-kinetics模擬可見光/TiO2反應機制
4.2.3 綜合比較
4.3 降解效能與反應曲面
4.3.1 降解效能
4.3.2 反應曲面法實驗設計及潛在之交互作用
4.4液相層析及質譜解析-染料中間產物
第五章 結論與建議
5.1 結論
5.2 建議
第六章 參考文獻
附錄 138
附錄一 Presto-kinetics模擬UV/TiO2 反應機制參數條件
附錄二 Presto-kinetics模擬可見光/TiO2 反應機制參數條件
附錄三 背景實驗
附錄四 光催化實驗
附錄五 液相層析及質譜解析

Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., 1999, “Advanced oxidation processes (AOP) for water purification and recovery”, Catalysis Today, Vol. 53, no. 1, pp. 51-59.
Aarthi, T., & Madras, G., 2007, “Photocatalytic degradation of rhodamine dyes with nano-TiO2”, Industrial & engineering chemistry research, 46(1), pp. 7-14.
Abdelmalek, F., Ghezzar, M. R., Belhadj, M., Addou, A., & Brisset, J. L., 2006, “Bleaching and degradation of textile dyes by nonthermal plasma process at atmospheric pressure”, Industrial & engineering chemistry research,45(1), pp. 23-29.
Bansal, P., Singh, D., and Sud, D., 2010, “Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS”, Separation and Purification Technology, 72, 357-365.
Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B., 1988, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution”, Journal of Physical and Chemical Reference Data, Vol. 17, pp. 513–886.
Box, G. E. P. and Wilson, K. B., 1951, “On the Experimental Attainment of Optimum Conditions”, Journal of he Royal Statistical Society, Ser. B, 13, 1-45.
Bauer, C., Jacques, P., Kalt, A., 2001, “Photooxidation of an azo dye induced by visible light incident on the surface of TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, Vol.140, pp. 87-92.
Bras, R., Gomes, A., Ferra, M. I. A., Pinheiro, H. M., Goncalves, I. C., 2005, “Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor”, Journal of Biotechnology, Vol. 115, pp. 57-66.
Chong, M. N., Jin, B., Chow, W. K., Saint, C., 2010, “Recent developments in photocatalytic water treatment technology: A review”, Water Research, Vol. 44, pp. 2997-3027.
Chu, W., Wong, C. C., 2004, “The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations” , Water Research, Vol. 38, pp.1037-1043.

Chen, D., Ray, A. K., 1998, “Photodegradation kinetics of 4-nitrophenol in TiO2 suspension” , Water Research, Vol. 32, pp. 3223-3234.
Chen, Y., Sun, Z., Yang, Y. and Ke, Q., 2001, “Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water”, Journal of Photochemistry and Photobiology A: Chemistry 142(1): 85-89.
Choi, H., Al-Abed, S. R., Dionysiou, D. D., Stathatos E. and Lianos, P., 2010, “Chapter 8 TiO2-Based Advanced Oxidation Nanotechnologies for Water Purification and Reuse” , Sustainability Science and Engineering. C. E. Isabel and I. S. Andrea, Elsevier.Volume 2: 229-254.
Choi, W., Bae, S., Kim, S., Lee, S., 2014, “Dye decolorization test for the activity assessment of visible light photocatalysts: Realities and limitations”, Catalysis Today 224, pp. 21–28.
Duesterberg, C. K., Mylon, S. E., & Waite, T. D., 2008, “pH effects on iron-catalyzed oxidation using Fenton’s reagent” , Environmental science & technology, 42(22), 8522-8527.
Duesterberg, C. K., Cooper, W. J., & Waite, T. D., 2005, “Fenton-mediated oxidation in the presence and absence of oxygen” , Environmental science & technology, vol 39, pp. 5052-5058.
Davis, R.J., Gainer, J.L., O'Neal, G. and Wu, I.W., 1994, “Photocatalytic decolorization of wastewater dyes” , Water Environment Research, vol. 66, no. 1, pp. 50-53.
Fox, M. A. and Dulay, M. T., 1993, “Heterogeneous Photocatalysis”, Chem. Rev., 93, pp. 341-350.
Finkelstein, E., Rosen, G. M. and Rauckman, E. J., 1980, “ Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones” , Journal of the American Chemical Society, Vol. 102, pp. 4994–4999.
Friedmann, D., Mendive, C. and Bahnemann, D., 2010, “TiO2 for water treatment: Parameter saffecting the kinetics and mechanisms of photocatalysis”, Applied Catalysis B: Environmental, Vol. 99, pp. 398–406.
Gaya, U. I., Abdullah, A. H., 2008, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9(1): 1-12.
Guivarch, E., Trevin, S., Lahitte, C., & Oturan, M. A., 2003, “Degradation of azo dyes in water by electro-Fenton process”, Environmental Chemistry Letters,1(1), pp. 38-44.
Halliwell, B. and Gutteridge, J. M. C., 1989, “Free Radicals in Biology and Medicine”, 2nd, Oxford Press: New York.
Hsu, L. J., Lee, L. T., Lin, C. C., 2011, “Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2”, Chemical Engineering Journal 173(3): 698-705.
Hoffmann, M. R., Martin, S. T. and Choi, W., 1995, “Environmental applications of semiconductor photocatalysis” , Chemical Reviews, Vol. 95, pp. 69−96.
Herrmann, J. M., 1999, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants”, Catalysis Today, Vol. 53, pp. 115–129.
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J. M., 2001, “Photocatalytic degradation pathway of methylene blue in water”, Applied Catalysis B: Environmental, Vol. 31, Issue 13, pp.145-157.
Ishibashi, K., Fujishima, A., Watanabe, T. and Hashimoto, K., 2000, “Quantum yields of active oxidative species formed on TiO2 photocatalyst”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 134, pp. 139–142.
Jen, J. F., Leu, M. F. and Yang, T. C., 1998, “Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography” , Journal of Chromatography A, Vol. 796, pp. 283–288.
Joseph, M., Destaillats, H. and Hung, H. M., 2000, “The sonochemical degradation of azobenzene and related azo dyes: rates enhancements via Fenton’s reactions”, The Journal of Physical Chemistry−A, Vol.104, pp. 301−307.
Kwan, W. P., & Voelker, B. M., 2002, “Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite” , Environmental science & technology, 36(7), 1467-1476.
Kamat, P. V., 1993, “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces”, Chem. Rev., 93, pp. 267-269.
Kesselman, J. M., Weres, O., Lewis, N. S. and Hoffmann, M. R., 1997, “Electrochemical Production of Hydroxyl Radical at Polycrystalline Nb-Doped TiO2 Electrodes and Estimation of the Partitioning between Hydroxyl Radical and Direct Hole Oxidation Pathways”, Journal of Physical Chemistry B, Vol. 101, pp. 2637–2643.
Kim, G. and Choi, W., 2010, “Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light”, Applied Catalysis B: Environmental, Vol. 100, pp. 77–83.
Konstantinou, I. K., and Albanis, T. A., 2004, “TiO2-assisted photocatalytic degradation of azodyes in aqueous solution: kinetic and mechanistic investigations–A review”, Applied Catalysis B: Environmental, Vol. 49, pp. 1–14.
Kaur, S. and Singh, V., 2007, “TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation” , Journal of Hazardous Materials, Vol. 141, pp. 230-236.
Kiriakidou, F., Kondarides, D. I., Verykios, X. E., 1999, “The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes” , Catalysis Today, Vol. 54, pp. 119-130.
Ku, Y., Lee, W.H. and Wang, W.Y., 2004, “Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process”, Journal of Molecular Catalysis A: Chemical, Vol. 212, pp. 191-196.
Kyung, H., Lee, J. and Choi, W., 2005, “Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2 Suspensions under Visible-Light Illumination”, Environmental Science & Technology, Vol. 39, pp. 2376-2382.
Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata H., and Ohta, K., 2004, “Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide”, Journal of Photochemistry and Photobiology A: Chemistry 163(3): 419-424.
Laurent, D., Livertoux, M. H., Stark, A. A., Maria, W. R. and Leroya, P., 2001, “High-performance liquid chromatographic assay of hydroxyl free radical using salicylic acid hydroxylation during in vitro experiments involving thiols”, Journal of Chromatography B, Vol. 763, pp. 185–193.
Lopez, A. and Kiwi, J., 2001, “Modeling the Performance of an Innovative Membrane-Based Reactor. Abatement of Azo Dye (Orange II) up to Biocompatibility” , Industrial & Engineering Chemistry Research, Vol. 40, pp. 1852–1858.
Lu, Y., Phillips, D. R., Lu, L., Hardin, I. R., 2008, “Determination of the degradation products of selected sulfonated phenylazonaphthol dyes treated by white rot fungus Pleurotus ostreatus by capillary electrophoresis coupled with electrospray ionization ion trap mass spectrometry”, Journal of Chromatography A,Vol. 1208, pp. 223-231.
Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elimame, E., Guillard, C. and Herrmann, J.M., 2002, “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania”, Applied Catalysis B: Environmental, 39, pp. 75-90.
Litter, M. I., 1999, “Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems”, Applied Catalysis B: Environmental, Vol. 23, pp.89-114.
Legrini, O., Oliveros, E., and Braun, A. M., 1993, “Photochemical Processes for Water Treatment‖”, Chemical Reviews 93, 671-698.
Molina, G. C., Cayo, C. H., Rodrigues, M. A. S., and Bernardes, A. M., 2013, “Sodium isopropyl xanthate degradation by advanced oxidation processes”, Minerals Engineering 45(0): 88-93.
Ma, Hongjuan., Wang, Min., Pu, Changyong., Zhang, Jing., Zhao, Sufang., Yao, Side. and Xiong, Jie., 2009, “Transient and steady-state photolysis of p-nitroaniline in aqueous solution”, Journal of Hazardous Materials 165 pp.867-873.
Monteagudo, J.M. and Duran, A., 2006,“Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of Orange II in aqueous solution”, Chemosphere, 65, pp. 1242-1248.
Miura, Y., Ueda, J. I., & Ozawa, T., 1995,“Formation of the DMPO-OH adduct from Ti (IV) and DMPO in aqueous solution—the first ESR evidence”, Inorganica chimica acta, 234(1), pp. 169-171.
Neta, P., Steenken, S., Janzen, E. G. and Shetty, R. V., 1980, “Pattern of addition of hydroxyl radicals to the spin traps .alpha. –pyridyl 1–oxide N–tert–butyl nitrone”, Journal of physical chemistry, Vol. 84, pp. 532–534.
Neppolianm, B., Choi, H. C., Sakthivel, S., Arabindoo, B. and Murugesan, V., 2002, “Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4”, Chemosphere, Vol. 46, pp. 1173–1181.
Özen, A. S., Aviyente, V. and Klein, R. A., 2003, “Modeling the Oxidative Degradation of Azo Dyes: A Density Functional Theory Study”, Journal of physical chemistry A, Vol. 107, pp. 4898–4907.
Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, 1985,“Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder”, Bulletin of Chemical society of Janpan, Vol. 58, pp. 2015-2022.
Oturan, M. A., 2000,“An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2, 4-D”, Journal of Applied Electrochemistry, 30(4), pp. 475-482.
Park, H., Choi, W., 2003, “Visible light and Fe+3-mediated degradation of Acid Orange 7 in the absence of H2O2”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 159, pp. 241-247.
Panajkar, M. S. and Mohan, H., 1993, “Investigations of transients produced on reactions of dOH radicals with azobenzenes in aqueous solutions” , Indian Journal of Chemistry, Vol. 32A, pp. 25–27.
Papadam, T., Xekoukoulotakis, N. P., Poulios, I. and Mantzavinos, D., 2007, “Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions”, Journal of Photochemistry and Photobiology A: Chemistry, Vol.186, pp. 308–315.
Richardson, S. D., McGuire, J. M., Thruston Jr, A. D. and Baughman, G. L., 1992, “Structural characterization of sulfonated azo dyes using liquid secondary ion mass spectrometry/tandem mass spectrometry”, Organic Mass Spectrometry, Vol. 27, pp. 289–299.
San, N., Hatipoğlu, A., Koçtürk, G. and Çınar, Z., 2002, “Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 146, pp.189-197.
Santos, M. S. F., Alves, A. and Madeira, L. M., 2011, “Paraquat removal from water by oxidation with Fenton’s reagent” , Chemical Engineering Journal, Vol. 175, pp. 279–290.
Soutsas, K., Karayannis, V., Poulios, I., Riga, A., Ntampegliotis, K., Spiliotis, X. and Papapolymerou, G., 2010, “Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes” , Desalination, 250, pp. 345-350.
Stylidi, M., Kondarides, D. I. and Verykios, X. E., 2003, “Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions”, Applied Catalysis B: Environmental, Vol. 40, pp. 271−286.
Strickland, A. F. and Perkins, W. S., 1995, “Decolorization of continuous dyeing wastewater by ozonation” , Textile Chemist and Colorist, Vol. 27, no. 5, pp. 11−15.
Sema, A. and Aviyente, V., 2005, “Experimental and modeling approach to decolorization of azo dyes by ultrasound: degradation of the hydrazone tautomer”, The Journal of Physical Chemistry A, Vol.109, pp. 3506−3516.
Tachikawa, T., Tojo, S., Fujitsuka, M., Majima, T., 2006, “Probing the Surface Adsorption and Photocatalytic Degradation of Catechols on TiO2 by Solid-State NMR Spectroscopy”, Langmuir, Vol. 22, pp. 893–896.
Tsai, W. T., Lee, M. K., Su, T. Y., and Chang, Y. M., 2009, “Photodegradation of bisphenol-A in a batch TiO2 suspension reactor”, Journal of Hazardous Materials 168(1): 269-275.
Tokumura, Masahiro, 2011, “Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: dynamic change of hydroxyl radical concentration”, Applied Catalysis B: Environmental, Vol. 106, pp. 565-576.
Tchobanoglous G., Burton F. L., Stensel H. D., 2014, “Wastewater Engineering : Treatment and Reuse”,pp. 1035-1044.
Vinu, R., Akki Spurti U. and Giridhar Madras, 2010, “Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2”, Journal of Hazardous Materials, 176, pp. 765-773.
Vinodgopal, K. and Wynkoop, D., 1996, “Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light”, Environmental Science and Technology, Vol. 30, pp. 1660−1666.
Vaughan, P. P., Blough, N. V., 1999, “Photochemical Formation of Hydroxyl Radical by Constituents of Natural Waters”, Environmental Science and Technology, Vol. 32, Issue 19, pp. 2947-2953.
Wang, Y., Hong, C. S., 2000, “TiO2-Mediated Photomineralization of 2-chlorobiphenyl: the Role of O2”, Water Research, 34, pp.2791-2797.
Wang, K., Zhang, J., Lou, L., Yang, S., Chen, Y., 2004, “UV or Visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions”, Journal of Photochemitry and Photobiology A: Chemistry, Vol. 165, pp. 201-207.
Wang, K., Chen, Y. X. and Ye, F. X., 2005, “Photodegradation of dye pollutants over TiO2 particles under UV–vis light irradiation” , Acta Energiae Solaris Sinica, Vol. 26, pp. 39-43.
Wang, Y. S., Shen, J. H., Lin, J. P. and Horng, J. J., 2012, “The TG and zeta-potential characterization of silver-zeolite composites for anti-bacterial capability”, Journal Thermal Analysis and Calorimetry, DOI 10.1007/s10973-012-2493-1.
Wojnárovits, L. and Takács, E., 2008, “Irradiation treatment of azo dye containing wastewater: An overview”, Radiation Physics and Chemistry, Vol. 77, pp. 225–244.
Yan, J. H., Liu, Y. N., Bo, Z., Li, X. D. and Cen, K. F., 2008, “Degradation of gas–liquid gliding arc discharge on Acid Orange II”, Journal of Hazardous Materials, Vol. 157, pp. 441−447.
Yang, J., Li, D., Wang, X., Yang, X., and Lu, L., 2002, “Synthesis and microstructural control of nanocrystalline titania powders via a stearic acid method”, Materials Science and Engineering: A 328(1–2): 108-112.
Zhang, J., Fu, D., Xu, Y. and Liu, C., 2010,“Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology”, Journal of Environmental Science, 22(8), pp. 1281-1289.
Zhan, H., Chen, K. and Tian, H. 1998, “Photocatalytic degradation of acid azo dyes in aqueous TiO2 suspensionII. The effect of pH values”, Dyes and Pigments, vol. 37, no. 3, pp. 241-247.






陳俊吉,2003,“利用回應曲面法探討添加胺基酸對肌酸酵素生產之影響”,國立成功大學化學工程學系,碩士論文。
羅泳勝,2005,“以反應曲面實驗設計法探討本土厭氧產氫菌Clostridium butyricum CGS2之最佳醱酵產氫條件”,國立成功大學化學工程學系,碩士論文。
楊倖僖,2012,“臭氧結合紫外光/過氧化氫程序降解水中環境賀爾蒙類物質烷基苯酚之研究”,國立中央大學環境工程研究所,碩士論文。
王勇勝,2008, “TiO2在不同光波源降解染料AO7及RhB之研究”,國立雲林科技大學防災與環境工程研究所,碩士論文。
王勇勝,2012, “TiO2光催化協同六價鉻之自由基產生機制與染料AO7降解途徑之研究”,國立雲林科技大學工程科技研究所博士班,博士論文。
林萬寅、葉慧君,2006, “Luminol 化學發光之增強及應用”, CHEMISTRY, 第64卷,pp.261–272。
徐向榮、王文華、李華斌,1999, “比色法測定Fenton反應產生的羟自由基及其應用”,PROGRESS IN BIOCHCMISTRY AND BIOPHYSICS,第1期。
高英哲,2001, “電弧電漿法製備碳微管暨水溶性碳微管之製備及應用”,碩士學位論文,國立清華大學化學系,新竹市。
葉怡成,2001,實驗計劃法-製程與產品最佳化,五南圖書出版公司, 6月。
趙保路,2009, “電子自旋共振技術在生物和醫學中的應用”,中國科學技術大學出版社。
林哲民,2012,“以染料AO7探討Fenton程序生成自由基之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文。
張芳淑,1995,“Fenton反應之最適化控制因子探討”,淡江大學,水資源及環境工程學系,博士論文。
張雅筑,2014,“利用Presto-Kinetics模擬Fenton降解有機物的方法研究”,國立雲林科技大學環境與安全衛生工程系,實務專題。
陳亭如、洪肇嘉、沈俊宏,2013,“以Presto-Kinetics探討Fenton及過硫酸鹽反應降解染料AO7之研究”,中華民國環境工程學會2013廢水處理技術研討會。
曾彥儒、林哲民、王勇勝、洪肇嘉,2012,“金屬離子影響Fenton反應釋出氫氧自由基之研究”,國立雲林科技大學,環境與安全衛生工程系,中華民國環境工程學會2011廢水處理技術研討會。
吳致誠,2002, “UV/TiO2 程序中氫氧自由基之生成研究” ,國立中興大學環境工程研究所,碩士論文。
鄭佳倩,2007, “以自由基捕捉/螢光法量測光催化反應中氫氧自由基之生成” ,國立高雄第一科技大學環境與安全衛生工程系碩士班,碩士論文。
萬騰州、陳清暉、劉文青、張乙森、陳全、李偉祥,1997, “以實驗設計法進行泡罩塔處理染整廢水可行性之研究”,第二十二屆廢水處理技術研討會論文集,pp. 791-802。
王淑娟,2006, “液相光催化反應之氫氧自由基生成量測-以甲醇為自由基捕捉劑” ,國立高雄第一科技大學環境與安全衛生工程系碩士班,碩士論文。
汪涵,2005, “電化學技術在環保領域的應用” ,化工環保期刊,第25卷 第5期。
宋衛鋒,倪亞明,何德文,2001, “電解法水處理技術的研究進展” ,化工環保期刊,第21卷第一期。
盧佩琦,2013, “ LC 及螢光分光光譜儀量測及定量 TiO2光觸媒產生之氫氧自由基” ,國立雲林科技大學,環境安全衛生工程系,實務專題。
盧明俊、阮國棟,1993,危害性有機物之催化光解技術,工業污染防治,第44 期,頁131-149。
李建弘,2009, “奈米Fe-Ni複合CNT及氧化鋁處理AO7、Pb+2、HSeO3-溶液之研究” ,國立雲林科技大學環境與安全衛生系碩士班,碩士論文。
李建弘、紀佳法,2007,“複合二樣化鈦微、奈米粒子及金屬離子降解偶氮染料之協同效應”, 國立雲林科技大學環境與安全衛生工程系,實務專題。
劉國光、張學治、丁雪軍、鄭立慶,2003,“二氧化鈦光催化劑的表徵方法研究”,環境污染治理技術與設備,第四卷,第四期,pp. 55-60,4 月。
吳政隆,2011,“多孔性 Cd(II)/TiO2 光觸媒製備及分解偶氮染料之研究”,南台科技大學化學工程與材料工程研究所,碩士論文。
陳玟妤,2011,“以太陽光/TiO2 光催化程序處理偶氮性染料廢水之研究”,國立聯合大學環境與安全衛生工程學系碩士班,碩士論文。
阮釋逸,2014,“香豆素捕捉氫氧自由基的螢光分析方法研究”,國立雲林科技大學環境與安全衛生工程系,實務專題。
莊鴻憶,2014,“過錳酸根協同TiO2光觸媒催化之初探”,國立雲林科技大學環境與安全衛生工程系,實務專題。
薛佩穎,2009,“二氧化鈦光催化去色偶氮染料之反應特性”,元智大學,化學工程與材料科學學系,碩士論文。
趙春美,2011,“質譜偵探,就是要你好看”,環檢之窗- 精采100:環境檢驗百寶箱,儀器原理篇,行政院環境保護署環境檢驗所。
謝永旭,1995,“光催化處理程序”,工業污染防治,第56 期,pp. 173-191。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top