跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李欣芸
研究生(外文):Hsin-Yun Li
論文名稱:改變參數條件與碳布材料改質對於光合微生物燃料 電池系統產電效率影響之研究
論文名稱(外文):The Effect of Parameter Conditions Change and Carbon Cloth Material Surface Modification on Electricity Production in Photosynthetic Microbial Fuel Cell
指導教授:萬騰州萬騰州引用關係
指導教授(外文):Terng-Jou Wan
口試委員:歐陽嶠暉黃志彬白子易
口試委員(外文):Chaio-Fuei OuyangChih-Pin HuangTzu-Yi Pai
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:微生物燃料電池擬球藻光合作用電極改質容積比例表面積比
外文關鍵詞:MFCNannochloropsis oculataphotosynthesiselectrode modifiedvolume ratiosurface area ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
微生物燃料電池(microbial fuel cell, MFC)係利用微生物降解廢水中有機物所產生之化學能轉換為電能之技術。儘管微生物燃料電池在理論上極具優勢,但實體運用上因內電阻、電極材質與材料及廢水型態等因素影響產電效率,使得開發技術成本高。
本研究係建構一創新薄膜式光合微生物燃料電池(Membrane Bioreactor-photosynthetic microbial fuel cell, MBR-PMFC)系統,為改善傳統式微生物燃料電池陽極通透面積過小與節省催化劑之使用,本研究運用陰極槽包覆陽極槽之方式,以增加陽極通透之表面積,此外,陰極以擬球藻(Nannochloropsis oculata)產生溶氧以減少催化劑添加;本研究主要針對電極材料(石磨(Graphite , G)、鉑(Platinum , Pt))、陽極與陰極容積比例(1:7、1:5、1:3)及陽極與陰極電極表面積比(1:1、1:2、2:1)進行系統產電效率之探討。
研究結果顯示:(1)容積比例1:7、電極表面積1:1為基準,改質Pt碳布最大功率密度(PDmax)為27 mW/m2,與未改質碳布之最大功率密度(PDmax) 11 mW/m2相比提升152%;而改質Pt碳布與未改質碳布陽極COD去除率相比提升約40%;(2)以Pt碳布電極、電極表面積1:1為基準,容積比例1:3最大功率密度(PDmax)為171 mW/m2,與原槽體容積比例1:7最大功率密度(PDmax)27 mW/m2相比其系統功率提升529%;而容積比例1:3與其他容積比例1:7、1:5相比提升10%;(3)以Pt碳布電極與容積比1:3為基準,陽極與陰極電極表面積1:1最大功率密度(PDmax)為171.1 mW/m2,與陽極、陰極電極表面積1:2、2:1相比提升45%;而陽極、陰極電極表面積1:1與其他陽極、陰極電極表面積1:2、2:1相比COD去除率提升不明顯。

The technology of microbial fuel cells (MFCs) is a technology of degrading organics in waste water using microbes to generate chemical energy which is then transformed into electricity. Although MFCs seem advantageous from the theoretical perspective, in practice, the development cost is quite high as their electricity generation efficiency is influenced by factors such as internal resistance, electrode material and quality, and form of waste water.
This study developed a membrane bioreactor-photosynthetic microbial fuel cell, (MBR-PMFC) system, resolving the issue of traditional MFCs of the positive electrode run-through area being too small and reducing the usage of catalyst. This study increased the anode run-through area by covering the anode with the cathode chamber. Moreover, in the cathode, nannochloropsis oculata was used to generate dissolved oxygen to reduce catalyst added. The focus of this study is on the discussions regarding the system electricity generation efficiency with different electrode materials (graphite and platinum), anode and cathode volume ratios (1:7, 1:5, and 1:3), and anode and cathode area ratios (1:1, 1:2, and 2:1).
The research findings are summarized below: (1) With the volume ratio of 1:7 and the electrode area ratio of 1:1, the PDmax with the modified carbon fiber cloth electrodes was 27 mW/m2, 152% higher than the PDmax with unmodified carbon fiber cloth electrodes, which was 11 mW/m2. And the anode COD removal rate was also 40% higher in comparison. (2) With the Pt carbon fiber cloth electrodes and the electrode area ratio of 1:1, the PDmax with the volume ratio of 1:3 was 171 mW/m2, 529% higher than the PDmax with original volume ratio of 1:3, which was 27 mW/m2. Moreover, it was 10% higher compared with the PDmax with the volume ratio of 1:7 and that with the volume ratio of 1:5. (3) With the Pt carbon fiber cloth electrodes and the volume ratio of 1:3, the PDmax with the electrode area ratio of 1:1 was 171 mW/m2, 45% higher than the PDmax with the electrode area ratio of 1:2 and that with the electrode area ratio of 2:1, while the improvement in the COD removal rate was not significant in comparison.

摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻回顧 6
2.1 微生物燃料電池起源與發展 6
2.2 微生物燃料電池原理 7
2.3 微生物燃料電池之影響因素 8
2.3.1 陽極微生物 8
2.3.2 陰極系統 8
2.3.3 槽體結構 9
2.3.4 電極材料 9
2.3.5 電極表面積 10
2.3.6 質子交換膜 11
2.3.7 電子梭 11
2.4 藻類簡介 12
2.5 擬球藻介紹 13
2.6 藻類生長特性 13
2.6.1 光照強度 13
2.6.2 溫度 14
2.6.3 pH 14
2.6.4 營養物質 15
2.6.5 氮源 15
2.6.6 碳源 15
2.6.7 鹽度 15
2.6.8 溶氧 16
第三章 實驗方法與材料 31
3.1 本研究各試程條件 31
3.2 電極材料製備與設計 32
3.2.1 未改質碳布 32
3.2.2 改質碳布Pt碳布電極 34
3.2.3 改質碳布G碳布電極 35
3.3 電極材料碳布預處理 37
3.4 質子交換膜(PEM) 38
3.5 質子交換膜(PEM)預處理 40
3.6 微生物之培養 40
3.7 擬球藻之培養與植種 42
3.8 MBR-PMFC系統之組裝、啟動與操作 45
3.9 改變不同之操作條件(陰、陽極槽電極表面積與容積比) 47
3.10 電能分析 51
3.11 水質分析 52
3.12 研究材料與儀器設備 53
第四章 結果與討論 57
4.1 各碳布電極試程 57
4.1.1 各碳布電極試程之極化曲線與功率密度曲線 57
4.1.2 各碳布電極試程之連續電壓 59
4.1.3 探討各碳布電極試程之產電效率 60
4.2 Pt碳布電極於各容積比例試程 60
4.2.1 Pt碳布電極於各容積比例之極化曲線與功率密度曲線 60
4.2.2 Pt碳布電極於各容積比例之連續電壓 62
4.2.3 探討Pt碳布電極於各容積比例之產電效率 63
4.3 Pt碳布電極、容積1:3於各電極表面積試程 63
4.3.1 Pt碳布、容積1:3於各電極表面積極化曲線與功率密度曲線 63
4.3.2 Pt碳布、容積1:3於各電極表面積之連續電壓 65
4.3.3 探討Pt碳布、容積1:3於各電極表面積之產電效率 66
4.4 各試程陽極槽水質處理 66
4.4.1 各試程陽極槽COD去除率 67
4.4.2 各試程陽極槽pH值 68
4.4.3 探討陽極槽水質處理效率 69
4.5 各試程陰極槽擬球藻 71
4.5.1 各試程陰極pH值 71
4.5.2 各試程陰極DO值 73
4.5.3 各試程陰極擬球藻生長 76
4.5.4 探討各試程陰極擬球藻生長 78
4.6 各試程產電效率 79
第五章 結論與建議 80
5.1 結論 80
5.2 建議 80
參考文獻 81


1.Abdullah, Alshehria, N, Z., Khaled, M, Ghanema., Saleh, M, Al-Garni., 2015, Application of a five level central composite design to optimize operating conditions for electricity generation in a microbial fuel cell, Journal of Taibah University for Science, 29
2.Aelterman, P., S, Freguia., J, Keller., W, Verstraete., K, Rabaey., 2008, Microbiol. Biotechnol, Pages 409–418
3.Aelterman, P., K, Rabaey., P, Clauwaert., W, Verstraete., 2006, Microbial fuel cells for wastewater treatment, Water Science and Technology, 54, 9-15
4.Akdeniz, F., A, Çağlar., D, Güllü., 2002, Recent energy investigations on fossil and alternative nonfossil resources in Turke, Energy Convers. Manage, 43, Pages 575-589
5.Birry, L., P, Mehta., F, Jaouen., J, P, Dodelet., S, R, Guiot., B, Tartakovsky., 2011, Application of iron-based cathode catalysts in a microbial fuel cell, Electrochimica Acta, 56, Pages 1505
6.Biffinger, J, C., R, Ray., B, Little., B, R, Ringeisen., 2007, Diversifying biological fuel cell designs by use of nanoporous filters, Environ. Sci. Technol, 41, Pages 1444–1440
7.Bergel, A., D, Feron., A, Mollica., 2005, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm, Electrochem. Commun, 7, Pages 900–904
8.Bond, D, R., D, R, Lovley., 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Applied and Environmental Microbiology, 69, Pages 1548–1555
9.Choi, Chansoo., Naixu, Hua., Bongsu, Limb., 2014, Cadmium recovery by coupling double microbial fuel cells, Bioresource Technology, 170, Pages 361–369
10.Collins, John., Tue, Ngo., Deyang, Qu., Michelle, Foster., 2013, Spectroscopic investigations of sequential nitric acid treatments on granulated activated carbon: Effects of surface oxygen groups on π density, Carbon, 57, Pages 174–183
11.Campo, A, González, del., P, Cañizares., MA, Rodrigo., FJ, Fernández., J, Lobato., 2013, Microbial fuel cell with an algae-assisted cathode: a preliminary assessment J Power Sources, 242, Pages 638–645
12.Chai, Xiaoli., Xin, Zhao., 2012, Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank, Bioresource Technology, 116, Pages 360–365 
13.Cheng, Shaoan., Bruce, E, Logan., 2011, Increasing power generation for scaling up single-chamber air cathode microbial fuel cells, Bioresource Technology, 102, 6, Pages 4468–4473
14.Christenson, L., R, Sims., 2011, Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol, 29, Pages 686–702
15.Clarens, A, F., E, P, Resurreccion., M, A, White., L, M, Colosi., 2010, Environmental life cycle comparison of algae to other bioenergy feedstocks, Environ Sci Technol, 44, Pages 1813–1819
16.Cuaresma, M., M, Janssen., C, Vilchez., R, H, Wijffels., 2009, Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance, Biotechnol Bioeng, 104, Pages 352–359
17.Chen, G, W., S, J, Choi., T, H, Lee., G, Y, Lee., J, H, Cha., C, W, Kim., 2008, Application of biocathode in microbial fuel cells: cell performance and microbial community, Microbiol, 79, Pages 379–388
18.Chisti, Y., 2007, Biodiesel from microalgae, Biotechnol Adv, 25, Pages 294–306
19.Clauwaert, P., D, Van, der, Ha., N, Boon., K, Verbeken., M, Verhaege., K, Rabaey., 2007, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ Sci Technol, 41, Pages 7564–7569
20.Clauwaert, P., D, Van, der, Ha., N, Boon., K, Verbeken., M, Verhaege., K, Rabaey., 2007, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ Sci Technol, 41, Pages 7564–7569
21.Cheng, S, A., B, E, Logan., 2007, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun, 9, Pages 492–496
22.Chenga, Shaoan., Hong, Liub., Bruce, E. Logan., 2006, Increased performance of single-chamber microbial fuel cells using an improved cathode structure, Electrochemistry Communications, 8, 3, Pages 489–494
23.Cheng, L., L, Zhang., H, Chen., C, Gao., 2006, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep Purif Technol, 50, Pages 324–329
24.Cheng, Shaoan., Hong Liu, Bruce, E, Logan., 2006, Increased performance of single-chamber microbial fuel cells using an improved cathode structure, Electrochemistry Communications, 8, 3, Pages 489–494
25.Castilla, C, Moreno., 2004, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42, Pages 83–94

26.Chaudhuri, S, K., D, R, Lovley., 2003, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, 21, Pages 1229–1232
27.Devi, MP., SV, Mohan., 2012, CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval, Bioresour Technol, 112, Pages 116–123
28.Duteanu, N., B, Erable., S, M, Senthil, Kumar., M, M, Ghangrekar., K, Scott., 2010, Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell, Bioresource Technology, 101, Pages 5250
29.Esmaeili, Chakavak., Mostafa, Ghasemi., Lee, Yook, Heng., Sedky, H, A, Hassan., Mahnaz, M, Abdi., Wan, Ramli, Wan, Daud., Hamid, Ilbeygi., Ahmad, Fauzi, Ismail., 2014, Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells, Carbohydrate Polymers, 114, 19, Pages 253–259
30.ElMekawya, Ahmed., Hanaa, M, Hegabc., Karolien, Vanbroekhovena., Deepak, Pant., 2014, Techno-productive potential of photosynthetic microbial fuel cells through different configurations, Renewable and Sustainable Energy Reviews, 39, Pages 617–627
31.Eduardo, J, L., R, Sergio., H, Sergio., S, Keiko., T, F, Telma., 2009, Development of operational strategies to removal carbon dioxide in photobioreactors, Chem. Eng. J, 151, Pages 120–126
32.Fernándeza, Hernández, F, J., A, Pérez, de, los, Ríosb., F, Mateo-Ramíreza., C, Godíneza., L, J, Lozano-Blancoa., J, I, Morenoa., F, Tomás-Alonsob., 2015, New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment, Chemical Engineering Journal, 279, 1, Pages 115–119
33.Fan, Y., S, Xu., R, Schaller., J, Jiao., F, Chaplen., H, Liu., 2011, Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells, Biosens. Bioelectron, 26, Pages 1908–1912
34.Fu, Chun-Chong., Tien-Chieh, Hung., Wen-Teng, Wu., Ten-Chin, Wen., Chia-Hung, Su., 2010, Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis, Biochemical Engineering Journal, 52, 15, Pages 175–180
35.Guo, Fei., Guokai, Fu., Zhi, Zhang., 2015, Performance of mixed-species biocathode microbial fuel cells using saline mustard tuber wastewater as self-buffered catholyte, Bioresource Technology, 180, 137-143

36.Guerrini, Edoardo., Matteo, Grattieri., Stefano, P, Trasatti., Massimiliano Bestetti., Pierangela, Cristiani., 2014, Performance explorations of single chamber microbial fuel cells by using various microelectrodes applied to biocathodes, International Journal of Hydrogen Energy, 39, 36, 12, Pages 21837–21846
37.Gouveia, Luísa., Carole, Neves., Diogo, Sebastião., Beatriz, P, Nobre., Cristina, T, Matos., 2014, Effect of light on the production of bioelectricity and added-value microalgae biomass in a Photosynthetic Alga Microbial Fuel Cell, Bioresource Technology, 154, Pages 171–177
38.Gajda, Iwona., John, Greenman., Chris, Melhuish., Ioannis, Ieropoulos., 2013, Photosynthetic cathodes for Microbial Fuel Cells, International Journal of Hydrogen Energy, 38, 26, Pages 11559–11564
39.Guo, K., S, Freguia., P, Dennis., X, Chen., B, Donose., J, Keller., J, Gooding., K, Rabaey., 2013, Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems, Environ. Sci. Technol, 47, Pages 7563–7570
40.Ghasemi, M., W, R, Wan., W, R, Ismail., M, Rahimnejad., A, F, Ismail., J, X, Leong., M, Miskan., K, Ben, Liew., 2012, Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, J. Hydrogen Energy, 38, Pages 5480-5484
41.Gong, Yanming., Sage, E, Radachowsky., Michael, Wolf., Mark, E, Nielsen., Peter, R, Girguis., Clare, E, Reimers., 2011, Benthic Microbial Fuel Cell as Direct Power Source for an Acoustic Modem and Seawater Oxygen/Temperature Sensor System, Environ. Sci. Technol, 45, 11, 5047–5053
42.Gong, Yanming., Sage, E, Radachowsky., Michael, Wolf., Mark, E, Nielsen., Peter, R, Girguis., Clare, E, Reimers., 2011, Benthic Microbial Fuel Cell as Direct Power Source for an Acoustic Modem and Seawater Oxygen/Temperature Sensor System, Environ. Sci. Technol, 45, 11, Pages 5047-5053
43.Gonzalez, C., J, Marciniak., S, Villaverde., C, Leon., P, A, Garcia., R, Munoz., 2008, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci Technol, 58, Pages 95–102
44.Gil, G, C., I, S, Chang., B, H, Kim., M, Kim., J, K, Jang., H, S, Park., H, J, Kim., 2003, Operational parameters affecting the performance of a mediatorless microbial fuel cell, Biosens. Bioelectron, 18, Pages 327–334
45.He, Q., H, Yang., L, Xu., L, Xia., C, Hu., 2015, Sufficient utilization of natural fluctuating light intensity is an effective approach of promoting lipid productivity in oleaginous microalgal cultivation outdoors, Bioresour. Technol, 180, Pages 79–87

46.He, Y, R., X, Xiao., W, W, Li., G, P, Sheng., F, F, Yan., H, Q, Yu., H, Yuan., L, J, Wu., 2012, Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode, Phys. Chem. Chem. Phys, 14, Pages 9966–9971
47.Hays, Sarah., Fang, Zhang., Bruce E, Logan., 2011, Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater, Journal of Power Sources, 196, 20, Pages 8293–8300
48.Huang, L., J, M, Regan., X, Quan., 2011, Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells, Bioresource Technol, 102, Pages 316–323
49.Hankamer, B., F, Lehr., J, Rupprecht., J, H, Mussgnug., C, Posten., O, Kruse., 2007, Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up, Physiol Plant, 131, Pages 10–21
50.Heijne, A, T., H, V, M, Hamelers., V, de, Wilde., R, A, Rozendal., C, J, N, Buisman., 2006, A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells, Environ. Sci. Technol, 40, Pages 5200–5205
51.He, Z., L, T, Angenent., 2006, Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18, Pages 2009–2015
52.He, Z., S, D, Minteer., L, T, Angenent., 2005, Electricity generation from artificial wastewater using an up flow microbial fuel cell, Environmental science & technology, 39, Pages 5262-5267
53.Ieropoulos, I., J, Winfield., J, Greenman., 2010, Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells, Bioresour Technol, 101, Pages 3520-3525
54.Inoue, K., X, Qian., L, Morgado., B, C, Kim., T, Mester., M, Izallalen., C, A, Salgueiro., D, R, Lovley., 2010, Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production byGeobacter sulfurreducens, Environ. Microbiol, 76, Pages 3999–4007
55.Ieropoulos, I., J, Greenman., C, Melhuish., 2003, Artificial metabolism: towards true energy autonomy in artificial life, Proceedings of the 7th ECAL, Dortmund, Germany, Pages 792-799
56.Ieropoulos, I., J, Greenman., C, Melhuish., 2003, Imitating metabolism: energy autonomy in biologically inspired robotics, Proceedings of the AISB’03, 2nd international symposium on imitation in animals and artifacts, SSAISB, Aberystwyth, Wales, Pages 191–194

57.Juang, D, F., C, H, Lee., S, C, Hsueh., 2012, Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode, Bioresource Technology, 123, Pages 23–29
58.Jincheng, Wei., Peng, Liang., Xia, Huang., 2011, Recent progress in electrodes for microbial fuel cells, Bioresource Technology, 102, 20, Pages 9335–9344
59.Kaur, Amandeep., Saad, Ibrahim., Christopher, J, Pickett., Iain, S, Michie., Richard, M, Dinsdale., Alan, J, Guwya., Giuliano, C, Premier., 2014, Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor, Sensors and Actuators B: Chemical, 201, 1, Pages 266–273
60.Kumara, G, Gnana., V, G, Sathiya, Sarathia., Kee, Suk, Nahmb., 2013, Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells, Biosensors and Bioelectronics, 43, Pages 461-475
61.Kiely, P, D., D, F, Call., M, D, Yates., J, M, Regan., B, E, Logan., 2010, Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera, Microbiol. Biotechnol, 88, Pages 371–380
62.Kim, J, R, C., S, E, Oh., B, E, Logan., 2007, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells, Environ. Sci. Technol, 41, Pages 1004–1009
63.Kang, K, H., J, K, Jang., T, H, Pham., H, Moon., I, S, Chang., B, H, Kim., 2003, A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor, Biotechnol Lett, 25, Pages 1357-1361
64.Li, W, W., He, Z, Yu H-q., 2014, Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy Environ Sci, 7, Pages 911–924
65.Liao, Qiang., Jun, Zhanga., Jun, Lia., Dingding, Ye., Xun, Zhu., Jili, Zheng., Biao, Zhang., 2014, Electricity generation and COD removal of microbial fuel cells (MFCs) operated with alkaline substrates, International Journal of Hydrogen Energy, 39, 33, 11, Pages 19349–19354
66.Lin, Chia-Chi., Chih-Hsun, Wei., Chih-I, Chen., Chwen-Jen, Shieh., Yung-Chuan, Liu., 2013, Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm, Bioresour Technol, 135, 640–643
67.Lin, C, C., Wei, C, H., Chen, C, I., Shieh, C, J., Liu, Y, C., 2013, Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm, Bioresour Technol, 135, Pages 640–643
68.Liu, J., Y, C, Yong., H, Song., C, M, Li., 2012, Activation enhancement of citric acid cycle to promote bioelectrocatalytic activity of Arca knockout escherichia coli toward high-performance microbial fuel cell, ACS Catal, 2, 8, Pages 1749–1752 
69.Li, Y, C., W, G, Zhou., B, Hu., M, Min., P, Chen., R, R, Ruan., 2012, Effect of light lntensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri andChlorella protothecoide cultivated in highly concentrated municipal wastewater, Biotechnol Bioeng, 109, Pages 2222–2229
70.Lai, B., X, Tang., H, Li., Z, Du., X, Liu., Q, Zhang., 2011, Power production enhancement with a polyaniline modified anode in microbial fuel cells, Biosens. Bioelectron, 28, Pages 373–377
71.Li, N., X, Ma., Q, Zha., K, Kim., Y, Chen., C, Song., 2011, Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry, Carbon, 49, Pages 5002–5013
72.Logan, B, E., 2009, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol, 7, 5, Pages 375–381
73.Liang, P., M, Z, Fan., X, X, Cao., X, Huang., 2009, J. Chem. Technol. Biotechnol, 84, Pages 794–799 platensis biofilm, Bioresour Technol, 135, 640–643
74.Lal, R., 2008, Sequestration of atmospheric CO2 in global carbon pools, Energy Environ Sci, 1, Pages 86
75.Logan, B, E., 2007 Microbial Fuel Cell, John Wiley & Sons, Inc., Hoboken, (1st ed.)
76.Logan, B, E., B, Hamelers., R, A, Rozendal., U, Schrorder., J, Keller., S, Freguia., P, Aelterman., W, Verstraete., K, Rabaey., 2006, Microbial fuel cells: methodology and technology, Environ. Sci. Technol, 40, Pages 5181–5192
77.Logan, B, E., J, M, Regan., 2006, Microbial fuel cells-challenges and applications, Environ. Sci. Technol, 40, Pages 5172–5180
78.Liu, H., S, Cheng., B, E, Logan., 2005, Environmental Science and Technology, 39, Pages 5488–5493
79.Liu, H., B, E, Logan., 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol, 38, Pages 4040–4046
80.Liu, H., B, E, Logan., 2004, Electricity generation using an air-cathode single chamber microbial fuel cell (MFC) in the absence of a proton exchange membrane, Division of Environmental Chemistry—Preprints of Extended Abstracts, 44, 2, Pages 1485–1488
81.Liu, H., R, Ramnayanan., B, E, Logan., 2004, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environmental science & technology, 38, Pages 2281-2285

82.Mekhilefa, S., R, Saidur., A, Safaria., 2012, Comparative study of different fuel cell technologies, Renewable and Sustainable Energy Reviews, 16, 1, Pages 981–989
83.Mohan, SV., MP, Devi., G, Mohanakrishna., N, Amarnath., ML, Babu., PN, Sarma., 2011, Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment, Bioresour Technol, 102, Pages 1109–1117
84.Morais, M, G., J, A, V, Costa., 2007, Biofixation of carbon dioxide by Spirulinasp. And Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, J. Biotechnol, 129, Pages 439–445
85.Min, B., S, Cheng., B, E, Logan., 2005, Electricity generation using membrane and salt bridge microbial fuel cells, Water Res, 39, Pages 1675–1686
86.Min, B., B, E, Logan., 2004, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell, Environmental science & technology, 38, Pages 5809-5814
87.Mark, Ormerod, R., 2003, Solid oxide fuel cells, the royal society of chemistry, Chem Soc Rev, 32, Pages 17–28 RSC Advances, 2, Pages 1248-1263
88.Nimje, Vanita, Roshan., Chien-Yen, Chen., Hau-Ren, Chen., Chien-Cheng, Chen., Yuh, Ming, Huang., Min-Jen, Tseng., Kai-Chien, Cheng., Young-Fo, Chang., 2012, Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis, Bioresource Technology, 104, Pages 315–323
89.Norici, A., A, M, Bazzoni., A, Pugnetti., J, A, Raven., M, Giordano., 2011, Impact of irradiance on the C allocation in the coastal marine diatom Skeletonema marinoiSarno and Zingone, Plant Cell Environ, 34, Pages 1666–1677
90.Oliveira, V, B., M, Simões., L, F, Melo., A, M, F, R, Pinto., 2013, Overview on the developments of microbial fuel cells, Biochem. Eng. J, 73, Pages 53–64
91.Oh, S, E., B, E, Logan., 2005, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies, Water Res, 39, Pages 4673–4682
92.Pua, Liangtao., Kexun, Li., Zhihao, Chen., Peng, Zhang., Xi, Zhang., Zhou, Fu., 2014, Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells, Journal of Power Sources, Pages 476-481
93.Pant, D., A, Singh., G, Van, Bogaert., S, Irving Olsen., P, Singh Nigam., L, Diels., K, Vanbroekhoven., 2012, Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters, RSC Adv, 2, Pages 1248–1263

94.Puig, Sebastia., Marta, Coma., Joachim, Desloover., Nico, Boon., Jesus, Colprim., M, Dolors, Balaguer., 2012, Autotrophic Denitrification in Microbial Fuel Cells Treating Low Ionic Strength Waters, Environ. Sci. Technol, 46, 4, Pages 2309-2315
95.Peixoto, L., B, Min., G, Martins., AG, Brito., P, Kroff., P, Parpot., I, Angelidaki., R, Nogueira., 2011, In situ microbial fuel cell-based biosensor for organic carbon, Bioelectrochemistry, 81, 2, Pages 99–103
96.Peighambardoust, S., S, Rowshanzamir., M, Amjadi., 2010, Review of the proton exchange membranes for fuel cell application, J. Hydrogen Energy, 35, Pages 9349-9384
97.Pant, D., G, Van, Bogaert., L, Diels, K, Vanbroekhoven., 2010, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour Technol, 101, Pages 1533–1543
98.Park, D, H., J, G, Zeikus., 2003, Biotechnol. Bioeng, 81, Pages 348–355
99.Qu, D., 2008, Mechanism for electrochemical hydrogen insertion in carbonaceous materials, J Power Sources, 179, Pages 310–316
100.Ren, Hao., Soonjae, Pyo., Jae-Ik, Lee., Tae-Jin, Park., Forrest, S, Gittleson., Frederick, C,C, Leung., Jongbaeg, Kim., André, D, Taylor., Hyung-Sool, Lee., Junseok, Chae., 2015, A high power density miniaturized microbial fuel cell having carbon nanotube anodes, Journal of Power Sources, 273, 1, Pages 823–830
101.Rahimnejad, Mostafa., Arash, Adhami., Soheil, Darvaria., Alireza, Zirepour., Sang-Eun, Ohc., 2015, Microbial fuel cell as new technology for bioelectricity generation: A review, Alexandria Engineering Journal, 29
102.Rahimnejad, M., A, Ghoreyshi., G, Najafpour., H, Younesi., M, Shakeri., 2012, A novel microbial fuel cell stack for continuous production of clean energy, J. Hydrogen Energy, 37, Pages 5992-6000
103.Rahimnejad, M., A, A, Ghoreyshi., G, Najafpour., T, Jafary., 2011, Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Energy, 88, Pages 3999-4004
104.Rabaey, K., L, Angenent., U, Schroder., J, Keller., 2009, Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application, IWA Publishing, Lodon
105.Radovic, L, R., 2009, Surface chemical and electrochemical properties of carbons, Carbon materials for electrochemical energy storage systems, Pages 163–219
106.Rittmann, B, E., 2008, Opportunities for renewable bioenergy using microorganisms, Biotechnology and Bioengineering, 100, Pages 203–212

107.Rozendal, R, A., H, V, M, Hamelers., R, J, Molenkamp., C, J, N, Buisman., 2007, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes, Water Res, 41, Pages 1984–1994
108.Rozendal, R, A., H, V, M, Hamelers., C, J, N, Buisman., 2006, Effects of membrane cation transport on pH and microbial fuel cell performance, Environ. Sci. Technol, 40, Pages 5206–5211
109.Rabaey, K., N, Boon., M, Höfte., W, Verstraete., 2005, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol, 39, Pages 3401–3408
110.Rabaey, Korneel., Willy, Verstraete., 2005, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, 23, 6, Pages 291-298
111.Rosenbaum, M., U, Schröder., F, Scholz., 2005, In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides, Environ Sci Technol, 39, Pages 6328–6333
112.Rabaey, K., W, Verstraete, 2005, Microbial fuel cells:novel biotechnology for energy generation, Trends Biotechnol, 23, 6, Pages 291-298
113.Rrguera, G., K, D, McCarthy., T, Mehta., J, S, Nicoll., M, T, Tuominen., D, R, Lovley., 2005, Extracellular electron transfer via microbial nanowires, Nature, 435, Pages 1098-1101
114.Song, Minkyung., Hong, Duc, Pham., Jiyun, Seon., Hee, Chul, Woo., 2015, Marine brown algae: A conundrum answer for sustainable biofuels production, Renewable and Sustainable Energy Reviews, 50, Pages 782–792
115.Singh, S, P., Priyanka, Singh., 2015, Effect of temperature and light on the growth of algae species: A review, Renewable and Sustainable Energy Reviews, 50, Pages 431–444
116.Santoro, Carlo., Sofia, Babanova., Kateryna, Artyushkova., Plamen, Atanassov., John, Greenman., Pierangela, Cristiani., Stefano, Trasatti., Andrew, J, Schuler.,,Baikun, Li., Ioannis, Ieropoulos., 2014, The effects of wastewater types on power generation and phosphorus removal of microbial fuel cells (MFCs) with activated carbon (AC) cathodes, International Journal of Hydrogen Energy, 39, 36, Pages 21796–21802
117.Sharaf, Omar, Z., Mehmet, F, Orhan., 2014, An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, 32, Pages 810–853
118.Scott, K., 2014, 10–Microbial fuel cells: transformation of wastes into clean energy, Membranes for Clean and Renewable Power Applications, Pages 266-300

119.Singh, D, P, Anoop., 2012, Key issues to consider in microalgae based biodiesel production, Energy Educ Sci Technol Part A Energy Sci Res, 29, Pages 563–576
120.Saito, T., M, Mehanna., X, Wang., R, D, Cusick., Y, Feng., M, A, Hickner., B, E, Logan., 2011, Effect of nitrogen addition on the performance of microbial fuel cell anodes, Bioresour. Technol, 102, Pages 395–398
121.Sánchez, M, Soria., A, Maroto, Valiente., A, Guerrero, Ruiz., D, M, Nevskaia., 2010, Adsorption of non-ionic surfactants on hydrophobic and hydrophilic carbon surfaces, J Colloid Interface Sci, 343, Pages 194–199
122.Schröder, U., 2009, Fuel cells – exploratory fuel cells Microbial fuel cells, Encyclopedia of Electrochemical Power Sources, Pages 206–216
123.Sanchez, J, Y., C, Iojoiu., F, Alloin., J, Guindet., J, C, Lepretre., 2009, FUEL CELLS – PROTON-EXCHANGE MEMBRANE FUEL CELLS Membranes: Non-Fluorinated, Encyclopedia of Electrochemical Power Sources, Pages 700–715
124.Shi, L., D, J, Richardson., Z, Wang., S, N, Kerisit., K, M, Rosso., J, M, Zachara., J, K, Fredrickson., 2009, The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer, Microbiol, 1, Pages 220–227
125.Strik, D, P, B, T, B., H, V, M, Hamelers., J, F, H, Snel., C, J, N, Buisman., 2008, Green electricity production with living plants and bacteria in a fuel cell, Int J Energy Res, 32, Pages 870–876
126.Schrőder, U., 2007, Phys. Chem. Chem. Phys, Pages 2619–2629
127.Timmers, R, A., D, P, B, T,B, Strik., H, V, M, Hamelers., C, J, N, Buisman., 2012, Characterization of the internal resistance of a plant microbial fuel cell, Electrochim Acta, 72, Pages 165–171
128.Tardast, A., M, Rahimnejad., G, Najafpour., A, A, Ghoreyshi., H, Zare., 2012, Fabrication and operation of a novel membrane-less microbial fuel cell as a bioelectricity generator, J. Environ. Eng, Pages 1-5
129.Tran, C., J, Kafle., X, Q, Yang., D, Qu., 2011, Increased discharge capacity of a Li–air activated carbon cathode produced by preventing carbon surface passivation, Carbon, 49, Pages 1266–1271
130.Wetser, Koen., Emilius, Sudirjo., Cees, J, N, Buismana., David, P, B, T, B, Strik., 2015, Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode, Applied Energy, 137, Pages 151-157
131.Wanga, De-Bin., Tian-Shun, Song., Ting, Guo., Qinglu, Zeng., Jingjing, Xie., 2014, Electricity generation from sediment microbial fuel cells with algae-assisted cathodes, International Journal of Hydrogen Energy, 39, 25, 22, Pages 13224–13230

132.Wang, Zhiwei., Jinxing, Ma., Yinlun, Xu., Hongguang, Yu., Zhichao, Wu., 2013, Power production from different types of sewage sludge using microbial fuel cells: A comparative study with energetic and microbiological perspectives, Journal of Power Sources, 235, 1, Pages 280–288
133.Wang, L., P, Liang., J, Zhang., X, Huang., 2011, Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells, Bioresource Technology, 102, Pages 5093
134.Wei, Jincheng., Peng, Liang., Xia, Huang., 2011, Recent progress in electrodes for microbial fuel cells, Bioresource Technology, Pages 9335–9344
135.Wang, X., S, Cheng., X, Zhang., X, Y, Li., B, E, Logan., 2011, Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 36, Pages 13900
136.Wang, Xin., Yujie, Feng., Jia, Liu., He, Lee., Chao, Li., Nan, Li., Nanqi, Ren., 2010, Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs), Biosensors and Bioelectronics, 25, 12, 15, Pages 2639–2643
137.Woertz, IC., Fulton, L., Lundquist, T, J., 2009, Nutrient removal & greenhouse gas abatement with CO2-supplemented algal high rate ponds, WEFTEC Annual Conference, Water Environment Federation, October 12–14, Pages 13
138.Wang, X., S, A, Cheng., Y, J, Feng., M, D, Merrill., T, Saito., B, E, Logan., 2009, Environ. Sci. Technol, 43, Pages 6870–6874
139.Wang, X., Y, Feng., N, Ren., H, Wang., H, Lee., N, Li., Q, Zhao., 2009, Accelerated start-up of two chambered microbial fuel cells: effect of anodic positive poised potential, Electrochim. Acta, 54, Pages 1109–1114
140.Watanabe, K., J, Biosci., 2008, Recent developments in microbial fuel cell technologies for sustainable bioenergy, J. Biosci. Bioeng, 106, Pages 528–536
141.Xie, X., G, Yu., N, Liu., Z, Bao., S, C, Criddle., Y, Cui., 2012, Energy & Environmental Science, 5, Pages 6862–6866
142.You, Jiseon., Carlo, Santoro., John, Greenman., Chris, Melhuish., Pierangela, Cristiani., Baikun, Li., Ioannis, Ieropoulos., 2014, Micro-porous layer (MPL)-based anode for microbial fuel cells, International Journal of Hydrogen Energy, 39, 36, 12, Pages 21811–21818
143.Yong, Y, C., Y, Y, Yu., Y, Yang., J, Liu., J, Y, Wang., H, Song., 2013, Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin, Biotechnol. Bioeng, 110, Pages 408–416

144.Yong, Y, C., Z, Cai., Y, Y, Yu., P, Chen., R, R, Jiang., B, Cao., J, Z, Sun., J, Y, Wang., H, Song., 2013, Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells, Bioresource Technol, 130, Pages763–768
145.Yong, Y, C., X, C, Dong., M, B, Chan-Park., H, Song., P, Chen., 2012, Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells, ACS Nano, 6, 3, Pages 2394–2400
146.Yong, Y, C., Y, Y, Yu., Y, Yang., C, M, Li., R, R, Jiang., X, Wang., J, Y, Wang., H, Song., 2012, Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells, Electrochem. Commun, 19, Pages 13–16
147.Yong, Y, C., Y, Y, Yu., C, M, Li., J, J, Zhong., H, Song., 2011, Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells, Biosens. Bioelectron, 30, 1, Pages 87–92
148.Yazdi, Rismani, H., S, M, Carver., A, D, Christy., O, H, Tuovunen., 2008, Cathodic limitations in microbial fuel cells: an overview, Journal of Power Sources, 180, Pages 683
149.You, S, J., Q, L, Zhao., J, N, Zhang., J, Q, Jiang., C, L, Wan., M, A, Du., S, Q, Zhao., 2007, Nanostructured and Advanced Materials for Fuel Cells, 173, Pages 172-177
150.You, S, J., Q, L, Zhao., J, Q, Jiang., J, N, Zhang., 2006, Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation, Chem Biochem Eng, 20, Pages 407–412
151.Zhou, M., J, Yang., H, Wang., T, Jin., D, J, Hassett., T, Gu., 2013, Bioelectrochemistry of microbial fuel cells and their potential applications in bioenergy, Bioenergy Research, Pages 131–153
152.Zhou, Minghua., Huanhuan, He., Tao, Jin., Hongyu, Wang., 2012, Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris, Journal of Power Sources, 214, 15, Pages 216–219
153.Zhou, M., M, Chi., H, Wang., T, Jin., 2012, Anode modification by electrochemical oxidation: a new practical method to improve the performance of microbial fuel cells, Biochem. Eng. J, 60, Pages 151–155
154.Zhou, M., M, Chi., J, Luo., H, He., T, Jin., 2011, An overview of electrode materials in microbial fuel cells, Journal of Power Sources, 196, Pages 4427

155.Zhou, Minghua., Meiling, Chi., Jianmei, Luo., Huanhuan, He., Tao, Jin., 2011, An overview of electrode materials in microbial fuel cells, Journal of Power Sources, 10, Pages 4427-4435
156.Zhu, N., X, Chen., T, Zhang., P, Wu., P, Li., J, Wu., 2011, Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes, Bioresour. Technol, 102, Pages 422–426
157.Zhoua, Minghua., Meiling, Chia., Jianmei, Luob., Huanhuan, Hea., Tao, Jina., 2008, An overview of electrode materials in microbial fuel cells, Journal of Power Sources, 196, 10, 15, Pages 4427–4435

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊